Period Period ## Naming Substituted Hydrocarbons A substituted hydrocarbon is a hydrocarbon with an element other than hydrogen attached somewhere along the hydrocarbon chain. It is named in a similar fashion to a hydrocarbon. This can be illustrated with alcohols as an example. The compounds pictured to the lower left are alcohols. They look like alkanes with -OH at one end where a hydrogen would have been. The -OH is called a functional group. The rest of the molecule is called a residue (R). The general formula for alcohols is R-OH. CH₃OH, the first alcohol pictured to the left is formed by substituting an -OH group for hydrogen on methane (CH₄). As a result, it is called 1methanol. The suffix ol shows that it is an alcohol. The root methan comes from methane. The number 1 shows the location of the -OH. The next alcohol in the series, CH₃CH₂OH, formed from ethane, called 1-ethanol. i s CH₂CH₂CH₂OH is 1-propanol. The alcohols and several other classes of substituted hydrocarbons are found in *Table R*. The root is determined by counting the number of carbons in the chain. For halides, the substitution is identified with a prefix. For the remaining substitutions, a suffix is used. (See *Table R*.) As with all hydrocarbons, the number and location of groups needs to be identified. 1,2,2-trifluoropropane 2-butanone ## Table R Organic Functional Groups | Organic Functional Groups | | | | |---------------------------|--|--------------------------------------|---| | Class of
Compound | Functional
Group | General
Formula | Example | | halide
(halocarbon) | -F (fluoro-) -Cl (chloro-) -Br (bromo-) -I (iodo-) | R—X
(X represents
any halogen) | CH ₃ CHClCH ₃
2-chloropropane | | alcohol | -он | R-ОН | CH ₃ CH ₂ CH ₂ OH
1-propanol | | ether | -0- | R-O-R' | CH ₃ OCH ₂ CH ₃
methyl ethyl ether | | aldehyde | O
 -C-H | O

 R—C—H | O

CH ₃ CH ₂ C—H
propanal | | ketone | -C-
0 | O

 R-C-R' | $\begin{array}{c} \text{O} \\ \text{II} \\ \text{CH}_3\text{CCH}_2\text{CH}_2\text{CH}_3 \\ \text{2-pentanone} \end{array}$ | | organic acid | -С-ОН
О | O
II
R-C-OH | O
II
CH ₃ CH ₂ C—OH
propanoic acid | | ester | O
II
-C-O- | O

 R-C-O-R' | O
II
CH ₃ CH ₂ COCH ₃
methyl propanoate | | amine | - N- | R'
 R-N-R" | CH ₃ CH ₂ CH ₂ NH ₂
1-propanamine | | amide | O
II I
-C-NH | O R'

 R—C—NH | O
II
CH ₃ CH ₂ C—NH ₂
propanamide | Name the following compounds using the rules for naming hydrocarbons and by referring to the reading and Table R above. 1. CH₃CH₂CHOHCH₃ ## ORGANIC CHEMISTRY | 3. H—C—C—OH | |---| | 4. CH ₃ CH ₂ CCH ₂ OCH ₂ CH ₃ | | 5. CH ₃ OCH ₃ | | 6. H—C—C—C—O—C—H—H———————————————————————— | | 7 _. CH ₃ CH ₂ CH ₂ CH | | 7. CH ₃ CH ₂ CH ₂ CH | | | | 8. CH ₃ CH ₂ CH ₂ CHOHCH ₂ CH ₂ CH ₃ | | 9. CH ₃ CHO | | 10. CH ₃ CH ₂ COOCH ₂ CH ₂ CH ₂ CH ₃ | | 11. H—C—C—C—OH | | 12. CCl ₄ | | 13. CF ₂ CH ₂ | | 14. HC—O—CH ₃ | | | | 15. CH ₃ CH ₂ OCH ₂ CH ₃ | | 16. CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH | | 17. CH ₃ CH ₂ CHOH CH ₂ CH ₂ CH ₃ | | 18. CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CHO | | 19. CH ₃ CH ₂ CHBrCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ | | 20. CH ₃ CHNH ₂ CH ₂ CH ₃ |