Period Period

Naming Substituted Hydrocarbons

A substituted hydrocarbon is a hydrocarbon with an element other than hydrogen attached somewhere along the hydrocarbon chain. It is named in a similar fashion to a hydrocarbon. This can be illustrated with alcohols as an example. The compounds pictured to the lower left are

alcohols. They look like alkanes with -OH at one end where a hydrogen would have been. The -OH is called a functional group. The rest of the molecule is called a residue (R). The general formula for alcohols is R-OH. CH₃OH, the first alcohol pictured to the left is formed by substituting an -OH group for hydrogen on methane (CH₄). As a result, it is called 1methanol. The suffix ol shows that it is an alcohol. The root methan comes from methane. The number 1 shows the location of the -OH. The next alcohol in the series, CH₃CH₂OH, formed from ethane, called 1-ethanol. i s

CH₂CH₂CH₂OH is 1-propanol.

The alcohols and several other classes of substituted hydrocarbons are found in *Table R*. The root is determined by counting the number of carbons in the chain. For halides, the substitution is identified with a prefix. For the remaining substitutions, a suffix is used. (See *Table R*.) As with all hydrocarbons, the number and location of groups needs to be identified.

1,2,2-trifluoropropane

2-butanone

Table R Organic Functional Groups

Organic Functional Groups			
Class of Compound	Functional Group	General Formula	Example
halide (halocarbon)	-F (fluoro-) -Cl (chloro-) -Br (bromo-) -I (iodo-)	R—X (X represents any halogen)	CH ₃ CHClCH ₃ 2-chloropropane
alcohol	-он	R-ОН	CH ₃ CH ₂ CH ₂ OH 1-propanol
ether	-0-	R-O-R'	CH ₃ OCH ₂ CH ₃ methyl ethyl ether
aldehyde	O -C-H	O R—C—H	O CH ₃ CH ₂ C—H propanal
ketone	-C- 0	O R-C-R'	$\begin{array}{c} \text{O} \\ \text{II} \\ \text{CH}_3\text{CCH}_2\text{CH}_2\text{CH}_3 \\ \text{2-pentanone} \end{array}$
organic acid	-С-ОН О	O II R-C-OH	O II CH ₃ CH ₂ C—OH propanoic acid
ester	O II -C-O-	O R-C-O-R'	O II CH ₃ CH ₂ COCH ₃ methyl propanoate
amine	- N-	R' R-N-R"	CH ₃ CH ₂ CH ₂ NH ₂ 1-propanamine
amide	O II I -C-NH	O R' R—C—NH	O II CH ₃ CH ₂ C—NH ₂ propanamide

Name the following compounds using the rules for naming hydrocarbons and by referring to the reading and Table R above.

1. CH₃CH₂CHOHCH₃

ORGANIC CHEMISTRY

3. H—C—C—OH
4. CH ₃ CH ₂ CCH ₂ OCH ₂ CH ₃
5. CH ₃ OCH ₃
6. H—C—C—C—O—C—H—H————————————————————————
7 _. CH ₃ CH ₂ CH ₂ CH
7. CH ₃ CH ₂ CH ₂ CH
8. CH ₃ CH ₂ CH ₂ CHOHCH ₂ CH ₂ CH ₃
9. CH ₃ CHO
10. CH ₃ CH ₂ COOCH ₂ CH ₂ CH ₂ CH ₃
11. H—C—C—C—OH
12. CCl ₄
13. CF ₂ CH ₂
14. HC—O—CH ₃
15. CH ₃ CH ₂ OCH ₂ CH ₃
16. CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH
17. CH ₃ CH ₂ CHOH CH ₂ CH ₂ CH ₃
18. CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CHO
19. CH ₃ CH ₂ CHBrCH ₂ CH ₂ CH ₂ CH ₂ CH ₃
20. CH ₃ CHNH ₂ CH ₂ CH ₃