Chemistry: Form	WS5.5.4A
-----------------	----------

CHEMICAI

Form WS5.5.4A	Name	
L FORMULAS AND EQUATIONS	Date	Period

Everything about Equations

A chemical equation contains a lot of information. Many equations show evidence of a chemical change such as a change in temperature (exothermic – give off heat; endothermic – absorb heat), release of a gas, or formation of a precipitate. Other identifying characteristics of a chemical equation such as a change in color or a change in odor cannot be demonstrated in the equation. Some changes and/or conditions are shown using symbols such as [1] solid precipitate – (s) or \downarrow ; [2] liquid – (ℓ); [3] gas – (g) or \uparrow ; [4] dissolved in water or aqueous – (aq); [5] heat – Δ ; [6] electricity – elec.; and [7] light – \uparrow . Symbols and formulas that are neither reactants nor products are written above or below the yield sign (\rightarrow) . Examine the equation below:

$$2\text{KClO}_3(s) \xrightarrow{\text{MnO}_2(s)} 2\text{KCl}(s) + 3\text{O}_2(g)$$

The equation tells us the following: [1] The reactant is KClO₃; [2] KClO₃ is a solid; [3] KClO₃ decomposes, particularly when heated (Δ) in the presence of the catalyst MnO₂; [4] One of the products is KCl, a solid; [5] The other product is O2, a gas. [6] Conservation of mass is shown because the reactants contain 2 atoms of K, 2 atoms of Cl, and 6 atoms of O, and the products contain 2 atoms of K, 2 atoms of Cl, and 6 atoms of O also.

Sometimes a reaction results in the formation of a precipitate from dissolved reactants. Examine the equation below:

$$K_2SO_4(aq) + Ca(NO_3)_2(aq) \rightarrow 2KNO_3(aq) + CaSO_4(s)$$

The equation tells us the following: [1] The reactants are K₂SO₄ and CaNO₃; [2] Both reactants are dissolved; [3] A double-displacement reaction occurs resulting in the formation of a precipitate; [4] The precipitate is identified using Table F-Solubility Guidelines; [5] Conservation of mass is shown because the reactants contain 2 atoms of K, 1 sulfate ion, 1 atom of Ca, and 2 nitrate ions, and the products contain 2 atoms of K, 1 sulfate ion, 1 atom of Ca, and 2 nitrate ions; [6] The sum of the coefficients is 5 as in the example below.

Example						
Unbalanced Equation:	$CuSO_4 + AgNO_3 \rightarrow Cu(NO_3)_2 + Ag_2SO_4$					
Balanced Equation:	$CuSO_4 + 2AgNO_3 \rightarrow Cu(NO_3)_2 + Ag_2SO_4$					
Sum of the Coefficients:	1 + 2 + 1 + 1 = 5					

Examine the unbalanced equations in the table on the next page. Determine the following: [1] The sum of the coefficients of the balanced equation; [2] The type of reaction (direct combination, decomposition, single displacement, double displacement); [3] Identify the phase(s) of the product(s); and [4] The signs that a chemical change has occurred.

Page 2

Unbalanced Equation	Sum of the Coefficients	Reaction Type	Phase	Evidence of Chemical Change
1. $\operatorname{FeCl}_3(aq) + \operatorname{NaOH}(aq) \rightarrow \operatorname{NaCl}(?) + \operatorname{Fe}(\operatorname{OH})_3(?)$				
2. $Al(s) + HCl(aq) \rightarrow AlCl_3(?) + H_2(?)$				
3. $Mg(s) + O_2(g) \rightarrow MgO(?)$				
4. $H_2O_2(aq) \xrightarrow{MnO_2} H_2O(?) + O_2(?)$				
5. $H_2CO_3(aq) \rightarrow H_2O(?) + CO_2(?)$				
6. $Pb(s) + CuSO_4(aq) \rightarrow PbSO_4(?) + Cu(?)$				
7. $H_2O(\ell) + N_2O_5(g) \rightarrow HNO_3(?)$				
8. $\operatorname{Na}(s) + \operatorname{H}_2O(\ell) \rightarrow \operatorname{NaOH}(?) + \operatorname{H}_2(?)$				
9. $K_2CrO_4(aq) + Al(NO_3)_3(aq) \rightarrow KNO_3(?) + Al_2(CrO_4)_3(?)$				
10. NaOH (aq) + H ₂ SO ₄ (aq) \rightarrow Na ₂ SO ₄ $(?)$ + H ₂ O $(?)$				
11. $C_2H_6(g) + O_2(g) \rightarrow CO_2(?) + H_2O(?)$				
12. $\operatorname{Cu}(s) + \operatorname{AgNO}_3(aq) \rightarrow \operatorname{Cu}(\operatorname{NO}_3)_2(?) + \operatorname{Ag}(?)$				
13. $N_2(g) + O_2(g) \rightarrow N_2O_5(?)$				
14. $O_3(g) \xrightarrow{\uparrow} O_2(g)$				
15. $\operatorname{Ca}(\operatorname{ClO}_3)_2(aq) + \operatorname{Li}_2\operatorname{SO}_4(aq) \rightarrow \operatorname{CaSO}_4(?) + \operatorname{Li}\operatorname{ClO}_3(?)$				