Colligative Properties

BOILING POINT ELEVATION

and

Freezing Point Depression

© Evan P. Silberstein, 2008

Definition

- Colligative properties = effect of solute on solvent due to the number of particles
- Examples:
 - **•** Freezing point depression
 - **o Boiling point elevation**
 - Vapor pressure
 - Osmotic pressure

The Nature of Colligative Properties

- Colligative properties are not affected by the properties of the solute, but, rather, only by the number of particles.
- Electrolytes dissociate producing more particles per mole than nonelectrolytes.

NaCl $(s) \rightarrow Na^+(aq) + Cl^-(aq)$ 1 mol $(s) \rightarrow 2$ mol (aq)

 Therefore electrolytes produce larger colligative affects than nonelectrolytes.

Freezing Point Depression

- The presence of dissolved solute lowers the freezing point of a solvent.
- Examples:
 - Putting salt on an icy sidewalk or roadway causes the ice to melt.
 - Antifreeze keeps
 the auto radiator
 from freezing.

Explaining Freezing Point Depression

Water freezing

 When water freezes, positive hydrogens line up with negative oxygens.

Water freezing with solute

 Solute interferes with crystallization, lowering the freezing point.

Na⁺ (blue) is attracted to oxygen. Cl⁻ is attracted to hydrogen.

Boiling Point Elevation

- The presence of nonvolatile dissolved solute raises the boiling point of a more volatile solvent.
 - Volatile = vaporizes easily, has a high vapor pressure
- Example:

Adding coolant to the auto radiator.
Antifreeze keeps the water in the radiator from boiling as much as it keeps it from freezing.

Explaining Boiling Point Elevation

Water boiling

 Water boils when the vapor pressure equals the surrounding pressure.

Water boiling with solute

 Dissolved solute reduces the vapor pressure, raising the boiling point.

Getting Quantitative

 1 mol of dissolved particles will elevate the boiling point of 1,000 g of water by 0.52°C and will depress the freezing point of 1,000 g of water by 1.86°C

> **Freezing Point Depression and Boiling Point Elevation of Water**

Freezing point depression 1.86°C/mol

Boiling point elevation 0.52°C/mol

Sample Problem 1

Find the boiling point of a solution containing 1,000 g of water and 2.5 mol of dissolved BaCl₂.

Step 1: Determine the number of moles of solute particles.

 $2.5BaCl_2(s) \rightarrow 2.5Ba^{2+}(aq) + 5Cl^{-}(aq) mol = 7.5$

• Step 2: Multiply the boiling point elevation per mole by the number of moles of solute to find the boiling point elevation.

BPE = 0.52°C/mol × 7.5 mol = 3.9°C

Step 3: Add the boiling point elevation to 100°C.
 BP = 100°C + 3.9°C = 103.9°C

Sample Problem 2

Find the freezing point of a solution containing 1,000 g of water and 90. g of dissolved antifreeze $(C_2H_4O_2)$.

• Step 1: Determine the number of moles of solute particles.

 $C = 12 \times 2 = 24$ H = 1 × 4 = 4 O = 16 × 2 = <u>32</u> 60.

$$(90. g)\left(\frac{1 \text{ mol}}{60. g}\right) = 1.5 \text{ mol}$$

• Step 2: Multiply the freezing point depression per mole by the number of moles of solute to find the freezing point depression.

FPD = 1.86°C/mol × 1.5 mol = 2.8°C

Step 3: Subtract the freezing point depression from 0°C.
FP = 0°C - 2.8°C = - 2.8°C