# The Nature of Solutions

Solubility

### The Definition of Solutions

- Definition: Solution = homogeneous mixture
- Nature of mixtures
  - Consists of two or more kinds of matter
  - Each substance in a mixture retains its own properties
    - sugar and water sweet and wet
    - brine (salt water) salty liquid
  - The composition is variable (not constant)



Can be separated by physical means

#### Solutions vs. Mechanical Mixtures

| Solution    | Mechanical Mixture |
|-------------|--------------------|
| Homogeneous | Heterogeneous      |

- Solutions are composed of two or more substances BUT the particles are distributed evenly throughout each other SO the composition is uniform.
  - The solution appears to be one substance even though it is two or more.

#### Parts of a Solution

- A solution consists of a solute dissolved in a solvent.
- Solute substance that IS dissolved by another
- Solvent
  - substance that dissolves another
  - o continuous phase
    - ✓ Example:

Salt dissolved in water appears to be a liquid.

The water is the continuous phase.

The water is the solvent.

The ability to dissolve in water

SOLUBILITY

### Factors Affecting Solubility

- Degree of solubility (how much dissolves)
- Temperature
- Pressure

### Degree of Solubility

- Nature of solute and solvent
  - In order for a solvent to dissolve a solute, it must exert forces of attraction on the solute.
  - Polar solvents such as water dissolve polar and ionic solutes because they exert mutual attractions that cause their particles to intermingle.
  - Nonpolar solvents such as benzene do NOT dissolve polar and ionic substances because they exert no forces of attraction that would cause the particles to separate so they can intermingle.
    - · Oil and water do NOT mix.
  - Nonpolar substances such as fat dissolve in nonpolar solvents such as benzene because the forces of attraction are too weak to prevent the particles from freely intermingling.

DOWN

• **Like** dissolves **like**.

### Solubility Guidelines

## • The Reference Tables provide solubility guidelines. Solubility Guidelines

| Ions That Form Soluble Compounds                                                                         | Exceptions                                                                                                            |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Group 1 ions<br>(Li <sup>+</sup> , Na <sup>+</sup> , etc.)                                               |                                                                                                                       |
| ammonium (NH <sub>4</sub> <sup>+</sup> )                                                                 |                                                                                                                       |
| nitrate (NO <sub>3</sub> <sup>-</sup> )                                                                  |                                                                                                                       |
| acetate (C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> <sup>-</sup> or CH <sub>3</sub> COO <sup>-</sup> ) |                                                                                                                       |
| hydrogen carbonate<br>(HCO <sub>3</sub> <sup>-</sup> )                                                   |                                                                                                                       |
| chlorate (ClO <sub>3</sub> <sup>-</sup> )                                                                |                                                                                                                       |
| perchlorate (ClO <sub>4</sub> <sup>-</sup> )                                                             |                                                                                                                       |
| halides (Cl <sup>-</sup> , Br <sup>-</sup> , I <sup>-</sup> )                                            | when combined with Ag <sup>+</sup> , Pb <sup>2+</sup> , and Hg <sub>2</sub> <sup>2+</sup>                             |
| sulfates (SO <sub>4</sub> <sup>2</sup> -)                                                                | when combined with Ag <sup>+</sup> ,<br>Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , and Pb <sup>2+</sup> |

| Ions That Form Insoluble Compounds         | Exceptions                                                                                 |
|--------------------------------------------|--------------------------------------------------------------------------------------------|
| carbonate (CO <sub>3</sub> <sup>2-</sup> ) | when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$                            |
| chromate (CrO <sub>4</sub> <sup>2-</sup> ) | when combined with Group 1 ions or ammonium $(NH_4^+)$                                     |
| phosphate (PO <sub>4</sub> <sup>3-</sup> ) | when combined with Group 1 ions or ammonium $(NH_4^+)$                                     |
| sulfide (S <sup>2</sup> -)                 | when combined with Group 1 ions or ammonium $(NH_4^+)$                                     |
| hydroxide (OH <sup>-</sup> )               | when combined with Group 1 ions, Ca <sup>2+</sup> , Ba <sup>2+</sup> , or Sr <sup>2+</sup> |

#### Which of the following is soluble in water?

- (NH<sub>4</sub>)<sub>3</sub>PO<sub>4</sub>
- $Ag_2S$
- Na<sub>2</sub>CO<sub>3</sub>







### Temperature

#### **Considerations**

- What happens to the particles of a solid when they dissolve in water?
   They separate.
- What happens to the particles of a gas when they dissolve in water?
- They come together.

#### **Effect of Temperature**

- Solubility of solid solutes generally increases as temperature increases.
- Solubility of gaseous solutes generally decreases as temperature increases.

#### Pressure

#### **Considerations**

 When solids dissolve in water the particles separate. What effect does pressure have on the distance between the particles of a solid?

#### None.

- When gases dissolve in water the particles come together.
   What effect does pressure have on the distance between the particles of a gas?
- Pressure pushes them together.

#### **Effect of Pressure**

 Solubility of solid solutes is not affected by pressure.

WRITE

- Solubility of gaseous solutes increases as pressure increases.
  - Henry's Law the mass of a dissolved gas in a liquid is directly proportional to the pressure of the gas.

### Rate of Solution

| DOWN                       |                                                                                       |                                                                               |  |
|----------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Factor                     | Affect on Solid<br>Solute                                                             | Affect on Gaseous<br>Solute                                                   |  |
| Particle Size              | Reducing particle size by crushing increases the rate by increasing surface area.     | Not applicable                                                                |  |
| Stirring                   | Increases the rate by exposing fresh solvent to solute and increasing kinetic energy. | Decreases the rate by increasing kinetic energy, thereby reducing solubility. |  |
| Amount of dissolved solute | As the amount of dissolved solute increases, the rate decreases.                      | As the amount of dissolved solute increases, the rate decreases.              |  |
| Temperature                | As the temperature increases, the rate increases.                                     | As the temperature increases, the rate decreases.                             |  |