

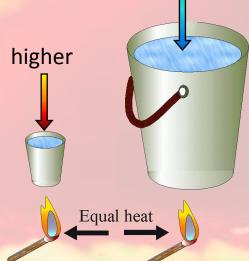
Definition: Energy is the ability to do work.

Types: Examples: Light Sound **Kinetic** Mechanical energy Heat Electricity Nuclear energy **Potential** Chemical energy

TYPES OF ENERGY

- WRITE
- Kinetic energy is the energy of motion.
- Potential energy is stored energy.
 - o atomic energy energy stored in the nucleus of an atom $[E = mc^2]$
 - o chemical energy energy stored in chemical bonds
- Heat is kinetic energy. What is moving?

Heat is the energy of moving molecules.


 When something heats up, the molecules move faster.

TEMPERATURE VS. HEAT

Are heat and temperature the same? lower

- Imagine a glass of water and a pail of water each absorb the same amount of heat.
- Which has the higher temperature? (or are they the same?)

AN ANALOGY

You win the lottery and convert it to \$1 bills.

Scenario 1

- You win \$1,000,000.
- You stand in the center of a room of 1,000 people and toss the bills in the air.
- There is a mad scramble for the money.

Scenario 2

- You win \$100,000.
- You stand in the center of a room of 20 people and toss the bills in the air.
- There is a mad scramble for the money.

How much do people get? \$1,000 How much do people get? \$5,000

- > Heat and temperature work like money.
- > No matter how much heat you have, the more molecules that share it, the lower the average.

DEFINITIONS

- Heat is the total kinetic energy of moving molecules.
- *Temperature* is the average kinetic energy of moving molecules.
- Which has more heat, a cup of water at 99°C or the Atlantic Ocean at 10°C?

The total is higher here.

The average is higher here.

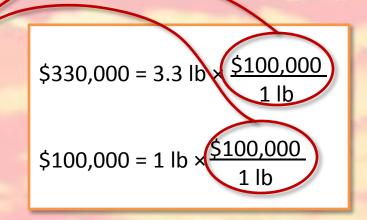
THE RELATIONSHIP

- As heat is added to a substance, the temperature increases.
 - Heat and temperature are directly proportional.
- As the mass of the substance being heated increases, the temperature change becomes smaller.
 - Mass and temperature are indirectly proportional.
- This relationship can be expressed mathematically.

THE EQUATION

- Heat is proportional to the product of the mass and the temperature change.
- The equation is not an equality.

```
q∝m×ΔT
q = heat (joules)
m = mass (g)
ΔT = temperature change
(K or °C)
∝ = proportional to
```


- o joules ≠ g × °C (It can't be equal! Look at the units!!)
- How can we get an equality? (We need one to do calculations!)

THE EQUALITY PROBLEM

 On December 1, 2007, a 3.3 lb white truffle was sold at auction for \$330,000.

- This means a 1lb chunk of the fungus would fetch \$100,000. Still, since the units are different, . . .
 - \circ 1 lb \neq \$100,000,
 - \circ and 3.3 lb \neq \$330,000,
 - o but they are proportional.
- The price per pound, \$\frac{\fir}{\fir}{\frac{\frac{\frac{\fir}{\frac{\frac{\frac{\frac{\firec{\frac{\fir}{\fir}{\firint{\fir\f{\frac{\frac{\frac{\frac{\fi

SPECIFIC HEAT CAPACITY

- **Specific heat** is the amount of heat needed to raise the temperature of 1 gram of a
 - substance by 1°C.

```
q = m × C × ΔT
q = heat (joules)
m = mass (g)
ΔT = temperature change
(K or °C)
C = specific heat capacity
(J/g°C)
```

• Many heat problems are based on water. The specific heat of water is $4.2 \, J/_{g^{\circ}C}$.

How much heat is needed to raise the temperature of 500. g of water by 15°C?

Step1: List the known variables

$$\circ$$
 m = 500. g

$$\circ$$
 C = 4.2 J/g° C

$$\circ \Delta T = 15^{\circ}C$$

Step 2: Determine the product

$$\circ$$
 q = mC Δ T

$$\circ$$
 q = (500. g)(4.2 $\frac{1}{2}$)(15°C)

$$\circ$$
 q = 31,500 J \approx 32,000 J

How much heat is needed to raise the temperature of 25 g of water from 27°C to 47°C?

(In this problem, the initial temperature $[T_i]$ and the final temperature $[T_f]$ are given instead of the temperature change $[\Delta T]$.)

- Step 1: Determine $\Delta T (\Delta T = T_f T_i)$
 - $\circ \Delta T = 47^{\circ}C 27^{\circ}C = 20.^{\circ}C$
- Step 2: List the known variables
 - \circ m = 25 g
 - \circ C = 4.2 $J/g^{\circ}C$
 - \circ $\Delta T = 20.$ °C
- Step 3: Determine the product
 - \circ q = mC Δ T
 - \circ q = (25 g)(4.2 $^{J}/_{g^{\circ}C}$)(20°C)
 - \circ q = 2100 J

What is the final temperature when 84 joules of heat are added to 2.0 gram of water at 15°C?

(In this problem, the amount of heat [q] and the initial temperature $[T_i]$ are given. The final temperature $[T_f]$ and the temperature change $[\Delta T]$ are the unknowns.)

- Step 1: List the known variables
 - \circ q = 84 J
 - \circ m = 2.0 g
 - \circ C = 4.2 $J/g^{\circ}C$
 - \circ T_i = 15°C
- Step 2: Determine ΔT (q = mCΔT)
 - \circ 84 J = (2.0 g)(4.2 $^{J}/_{g^{\circ}C}$)(ΔT)
 - \circ $\Delta T = 10^{\circ}C$
- Step 3: Determine T_f ($\Delta T = T_f T_i$)
 - \circ 10°C = T_f 15°C
 - \circ T_f = 25°C

OTHER SPECIFIC HEATS

 Consider two frying pans, one with a metal handle, and the other with a wood handle:

- Which one is more comfortable to handle with the bare hands after it has been on a hot flame? The wood handle
- Why are they different?
- Wood has a higher specific heat than metal. Wood is more resistant to temperature change. The wood is cooler even though it absorbed as much heat as the metal.
- It is possible to do calculations with specific heats other than that of water $(4.2^{\text{J}}/\text{g}_{\text{g}^{\circ}\text{C}})$. It is also possible for specific heat to be the unknown.

The specific heat of gold is 0.134 $J/g^{\circ}C$. How many joules will it take to make the temperature of a 20.0 g nugget go up 10.0°C?

(In this problem, the specific heat of gold is used instead of the specific heat of water.)

- Step 1: List the known variables
 - \circ m = 20.0 g
 - \circ C = 0.134 $J/_{g^{\circ}C}$
 - \circ T_i = 10°C
- Step 2: Determine the product
 - \circ q = mC Δ T
 - \circ q = (20.0 g)(0.134 $\frac{J}{g^{\circ}C}$)(10°C)
 - o q = 26.8 J

What is the specific heat of silicon if a 5.00 g sample is heated from 22.0°C to 42.0°C by adding 75.24 J?

(In this problem, the specific heat is the unknown.)

- Step 1: Determine $\Delta T (\Delta T = T_f T_i)$
 - \circ $\Delta T = 42.0^{\circ}C 22.0^{\circ}C = 20.0^{\circ}C$
- Step 2: List the known variables
 - \circ q = 75.24 J
 - \circ m = 5.00 g
 - \circ $\Delta T = 20.0$ °C
- Step 3: Solve for the specific heat, C (q = mCΔT)
 - \circ 75.24 J = (5.00 g)(C)(20.0°C)
 - \circ C = 0.752 $J/_{g^{\circ}C}$