

Nuclear Instability

- Protons are all positively charged.
- As a result, protons repel each other.
- The higher the atomic number is, the greater the repulsion among protons is.
- The larger the nucleus, is the more unstable it is.
- As a result:

Atoms with atomic numbers above 82 have no stable isotopes.

My mom told me to stay away from those guys. They're all unstable!

Neutrons to the Rescue

 What is the ratio of neutrons to protons for each of the following:

o Ca?	Element	Protons	Neutrons	N/P Ratio
o Zn?	Ca	20	20	1.0
	Zn	30	35	1.2
o Ag?	Ag	47	61	1.3
o Pb?	Pb	82	125	1.5

• As the number of protons increases, and the repulsion between them increases, the ratio of neutrons to protons increases.

Neutrons help to stabilize the nucleus.

The Belt of Stability

- Hydrogen is the only element that does not have neutrons.
- As the number of protons increases, the number of neutrons needed to keep the nucleus stable increases.
- The ratio of neutrons to protons in stable nuclei is between 1:1 and 1.5:1 (the higher ratio being associated with larger nuclei that have larger repulsive forces).
- Stable atoms have a ratio of neutrons to protons that falls within this belt of stability.

Radioactive Decay

- Unstable nuclei break apart or decay.
- Decaying nuclei release high speed particles and energy called radioactive emissions.
- Radioactive emissions separate in an electric field into three main types.
 - o Alpha particles
 - o Beta particles
 - o Gamma rays

Types of Emissions

- Alpha particle helium nucleus
- Beta particle electron emitted from the nucleus when a neutron decays
- Gamma ray energy

Positron – same as a beta particle, but with a positive charge

Emission	Charge	Mass	Symbol	
Alpha Particle	+2	4	α	⁴ He
Beta Particle	-1	0	β-	0 -1
Gamma Ray	0	0	γ	γ
Positron Emission	+1	0	β ⁺	0 +1