

- Reaction rates are defined as the change in concentration of a reactant or product per unit of time.
- Chemical reactions are reversible.
 - When reactants are first placed in the reaction vessel, initially the forward reaction is the dominant reaction.
 - As the concentration of products increases, the reverse reaction becomes important.
 - \circ (\triangle REACTANTS = Rate FORWARD Rate REVERSE)
- If conditions permit the reverse reaction to be neglected, the reaction rate depends on only the concentration of the reactants.

- The expression showing how the rate of the reaction depends on the concentration of the reactants is called a rate law.
- For the reaction $A + B \rightarrow C$,
 - The concentration of A, [A], can be held constant while the concentration of B, [B] is changed, and the rate measured, and
 - The concentration of B, [B], can be held constant while the concentration of A, [A] is changed, and the rate measured.
- This is how rate laws are determined.

- If
 - doubling the concentration of A causes the reaction rate to double,
 - while doubling the concentration of B causes it to quadruple,
 - and doubling them both causes the reaction rate to increase eightfold,
 - o the rate law is Rate = $k[A][B]^2$.
- The general form of rate laws is: Rate = $k[A]^m[B]^n$
- The value of m and n can only be determined experimentally.

- The form of the rate law depends on the reaction mechanisms.
- Experimental data verifying the rate law confirms the reaction mechanism.
- In multiple step reactions, the rate law is based on the rate determining step.

Single Step Reactions

Concentrations of reactants are raised to their stoichiometric coefficients based on collision theory.

- For A + B → 2C, where one particle of A collides with one of B to form two particles of C,
 - $\circ R = k[A][B]$
- For 2C → A + B, where two particles of C collide to form one of A and one of B,

$$\circ R = k[C]^2$$

Multiple Step Reactions

For the reaction: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$

- The mechanism is believed to consist of two steps.
 - Step 1: $NO_2(g) + NO_2(g) \rightarrow NO_3(g) + NO(g)$ slow
 - \circ Step 2: NO₃ (g) + CO (g) \rightarrow NO₂(g) + CO₂(g) fast
 - o Net $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$
- The rate law is determined from the rate determining step.
 - $\circ R = k[NO_2]^2$
- Experimental measurement of the rate law confirms the mechanism.

- Consider the reaction: $NH_4^+(aq) + NO_2^-(aq) \rightarrow N_2(g) + 2H_2O(\ell)$
- If it is a single step reaction, the rate law should be $R = k[NH_4^+][NO_2^-]$
- Below is some sample data:

Experiment	Initial Concentration of NH ₄ +	Initial Concentration of NO ₂ -	Initial Rate (mol/L•s)
1	0.100 <i>M</i>	0.0050 <i>M</i>	1.35×10^{-7}
2	0.100 <i>M</i>	0.010 <i>M</i>	2.70×10^{-7}
3	0.200 <i>M</i>	0.010 <i>M</i>	5.40×10^{-7}

Analysis of the data:

Experiment 1:

Rate $1 = 1.35 \times 10^{-7} \, mol \, / \, L \cdot s = k (0.100 mol \, / \, L)^n (0.0050 mol \, / \, L)^m$ Experiment 2:

Rate $2 = 2.70 \times 10^{-7} \, mol \, / \, L \cdot s = k (0.100 \, mol \, / \, L)^n (0.010 \, mol \, / \, L)^m$

 $\frac{\text{Rate 2}}{\text{Rate 1}} = \frac{2.70 \times 10^{-7} \, mol \, / \, L \cdot s}{1.35 \times 10^{-7} \, mol \, / \, L \cdot s} = \frac{k \left(0.100 mol \, / \, L\right)^n \left(0.010 mol \, / \, L\right)^m}{k \left(0.100 mol \, / \, L\right)^n \left(0.0050 mol \, / \, L\right)^m}$

 $\frac{\text{Rate } 2}{\text{Rate } 1} = 2.00 = (2.00)^m$

m = 1

Experiment 2:

Rate $2 = 2.70 \times 10^{-7} \, mol \, / \, L \cdot s = k (0.100 \, mol \, / \, L)^n (0.010 \, mol \, / \, L)^m$ Experiment 3:

Rate $1 = 5.40 \times 10^{-7} \, mol \, / \, L \cdot s = k (0.200 mol \, / \, L)^n (0.010 mol \, / \, L)^m$ Comparison:

 $\frac{\text{Rate 3}}{\text{Rate 2}} = \frac{5.40 \times 10^{-7} \, mol \, / \, L \cdot s}{2.70 \times 10^{-7} \, mol \, / \, L \cdot s} = \frac{k \left(0.200 mol \, / \, L\right)^n \left(0.010 mol \, / \, L\right)^m}{k \left(0.100 mol \, / \, L\right)^n \left(0.010 mol \, / \, L\right)^m}$

Rate 3 =
$$2.00 = (2.00)^n$$

$$n = 1$$

E PARTIE DE LE PARTIE DE LA COMPANION DE LA CO

A single step reaction occurs as follows:

$$X + 2Y \rightarrow C$$

- O Write the rate law. $R = k[X][Y]^2$
- What effect does cutting the concentration of Y in half have on the reaction rate? It cuts the rate to one fourth.
- A multistep reaction occurs as follows:

$$2X \rightarrow Y + A \qquad slow$$

$$2Y + A \rightarrow X + C \qquad fast$$

$$X + Y \rightarrow C \qquad net$$

- o Write the rate law. $R = k[X]^2$
- What effect does doubling the concentration of X have on the reaction rate? It quadruples the rate.