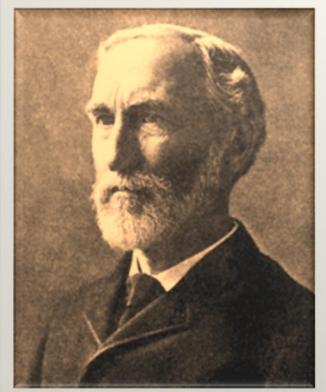
Gibbs Free Energy

Enthalpy


VS

Entropy

© Evan P. Silberstein, 2008

History

- In the 1870's, J. W. Gibbs developed the concept of "available energy" for a chemical reaction.
- Today it is called Gibbs energy, Gibbs function, or Gibbs Free Energy.
- It takes into account both the entropy and the enthalpy.

Some Analogies

Entropy [disorder]

- After a busy day of grazing in the pasture, cattle need to be rounded up.
- It takes a lot of work to round up the cattle.
- Open the door to the barn, and the cattle will spread themselves out. No work!!
- Conclusion: Decreasing entropy takes work. Increasing entropy releases energy.

Enthalpy [potential energy]

- Before you can enjoy the thrill of a roller coaster, the car needs to get to the top.
- It takes a lot of work to push the car uphill.
- Get to the top of the hill, and the car will rush down by itself. No work!!
- Conclusion: Increasing enthalpy takes work. Decreasing enthalpy releases energy.

Processes in which the entropy increases and the enthalpy decreases occur spontaneously.

Entropy and Enthalpy

- Whether a reaction proceeds spontaneously or not depends on the balance between two natural tendencies:
 - The drive toward greater stability (reduced potential energy or enthalpy); and
 - The drive toward less organization (increased entropy).

In nature, systems tend toward

 the lowest possible energy or enthalpy (H); and
 toward greater randomness (disorder) or entropy (S).

The Gibbs Equation

- The Gibbs free energy change (ΔG) predicts whether or not a reaction is spontaneous.
- It takes into account

 the change in enthalpy (ΔH); and
 the change in entropy (ΔS).
- The Gibbs free energy change is the difference between the energy change (ΔH) and the product of the absolute or Kelvin temperature (T) and the entropy change (ΔS).

 $\Delta G = \Delta H - T\Delta S$

Applying the Gibbs Equation

- For a system at equilibrium, $\Delta G = 0$.
- In order for a system to change spontaneously, the resulting ΔG must be negative.
- If the drive toward lower energy and higher entropy cannot be satisfied at the same time, the type of change that will be favored will depend on the temperature.
 - At low temperatures, the term TΔS will be small, and ΔH will have the greatest effect on the free energy.
 - \circ At high temperatures, the term T Δ S will be large, and Δ S will have the greatest effect on the free energy.

Interpreting the Gibbs Equation

Reaction Conditions			Is the reaction spontaneous?
Temperature	ΔН	ΔS	(Yes, No, Likely, or Unlikely)
High	+	-	No
High	+	+	Likely
High	-	-	Unlikely
High	-	+	Yes
Low	+	-	Νο
Low	+	+	Unlikely
Low	-	-	Likely
Low	-	+	Yes

An Example

- When water freezes entropy and enthalpy decrease.
- When water boils entropy and enthalpy increase.
- Water freezes at low temperature and boils at high temperature. Explain this based on the Gibbs free energy.
 - At low temperature TΔS is small, so it is outweighed by the negative ΔH when water freezes.
 - At high temperature TΔS is large, so it outweighs the positive ΔH when water boils.

Gibbs Sample Calculation

• Data for the heat of formation (ΔH_f°) and free energy of formation (ΔG_f°) can be found on the reference table, <u>Table W</u>.

Find the entropy of formation of carbon dioxide.

 Data from the table: $\Delta G_f^\circ = -394.2 \text{ kJ/mol}$; ΔH_f° = -393.3 kJ/mol; T = 298K

$$\circ \Delta G = \Delta H - T \Delta S$$

- \circ -394.2 kJ/mol = -393.3 kJ/mol 298K(Δ S)
- $\circ -0.9 \text{ kJ/mol} = -298 \text{K}(\Delta \text{S})$

 $\circ \Delta S = 0.003 \text{ kJ/mol} \cdot K$