Empirical Formulas

Chemical Formulas in Lowest Terms

What is an Empirical Formula?

- An empirical formula is the simplest ratio of the atoms present in a molecule.
- The following are empirical formulas because they cannot be reduced to lower terms:
 - CO₂, H₂O, NaCl, NaCO₂, CH, and C₃H₅.
- The following are NOT empirical formulas because they CAN be reduced to lower terms:
 - $\circ C_6H_{12}O_6$, H_2O_2 , $Na_2C_2O_4$, C_6H_6 , and C_6H_{10} .

Why Empirical Formulas?

- When chemists analyze compounds to find out what they are made of, they find out what elements are present and in what proportions.
- The proportion of elements in a compound is not the same as the molecular formula.
- For example, the octane in gasoline can be burned to form carbon dioxide and water.
- Measuring the masses of the products will show that octane has 4 carbon atoms to every 9 hydrogen atoms (C₄H₉).
- C₄H₉ is an empirical formula. The molecular formula is C₈H₁₈.

Why Else?

For many ionic substances, only an empirical formula exists.

- In a sodium chloride crystal, every sodium ion (shown in green) is ionically bonded to every adjacent chloride ion (shown in blue).
- There is no separate sodium chloride molecule. Instead, only the ratio of sodium to chloride ions is known. It is one to one.
- The formula is therefore NaCl.

Determining the Empirical Formula

- To determine the empirical formula from a molecular formula, simply reduce the subscripts to lowest terms.
- Examples:
 - o Glucose:
 - ✓ Molecular formula = $C_6H_{12}O_6$; The subscripts are all divisible by 6
 - ✓ Empirical formula = CH₂O;
 - O Hydrogen peroxide:
 - ✓ Molecular formula = H₂O₂; The subscripts are all divisible by 2
 - ✓ Empirical formula = HO

Determining the Molecular Formula

- It is possible to determine molecular formulas from empirical formulas and formula mass
- Procedure: molecular formulas are always some multiple of empirical formulas
 - Find the empirical formula mass like any other formula mass.
 - Divide the empirical formula mass into the molecular mass. This gives you a multiple.
 - Multiply the empirical formula by the multiple

Sample Problem

A compound with an empirical formula of CH₂ has a molecular mass of 42 amu. What is its molecular formula?

• Step 1: Determine the empirical formula mass.

$$\frac{CH_2}{C = 12 \times 1 = 12}$$
 $H = 1 \times 2 = 2$
14

• Step 2: Divide the molecular mass by the empirical formula mass to determine the multiple.

$$\frac{42}{14} = 3$$

 Step 3: Multiply the formula by the by the multiple to find the molecular formula

$$[CH_2] \times 3 = C_3H_6$$