

An Example

- Air is a mixture of gases: nitrogen, oxygen, carbon dioxide, water vapor, etc..
- Stormy weather is preceded by a falling barometer because, as the percentage of water in the air increases, the weight of the air decreases.
- Prove this by calculating the masses of the components of air. Refer to your <u>Periodic</u> <u>Table</u>.

The Masses of the Gases

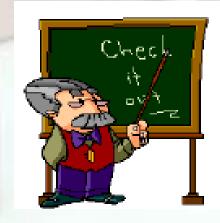
- Nitrogen is N₂.
- Its atomic mass is 14 amu.
- There are two atoms.
- The mass must be 28 amu.

- Carbon dioxide is CO₂.
- Carbon is 12 amu.
- Oxygen is 16 amu, but there are two for 32 amu.
- The total is 42 amu.

- Oxygen is O_2 .
- Its atomic mass is 16 amu.
- There are two atoms.
- The mass must be 32 amu.

- Water is H₂O.
- Hydrogen is 1 amu, but there are two for 2 amu.
- Oxygen is 16 amu.
- The total is 18 amu.

Water is the lightest of the gases.


A Formal Approach

- Procedure: To find the formula mass, add up the product of the subscript and the mass from the periodic table for each element shown in the formula.
- **Example**: silver nitrate

AgNO₃

•	<u>Element</u>	Subscript	Mass	<u>Product</u>
	Ag =	1×	108 =	108 amu
ĺ	N =	1 ×	14 =	14 amu
	0 =	3 ×	16 =	<u>48</u> amu
				170 amu

