

The Methane Problem

The Lewis structure for methane (CH₄) is:

H——C——H

 Based on the VSEPR model, the shape is tetrahedral.

- The electron dot diagram for carbon is $\ddot{\mathbf{C}}$.
- How do you get four bonds at 109° from two unpaired electrons in p orbitals at 90°?

The Atomic Orbital Conundrum

 The valence shell for the main group elements consists of one s orbital and 3 p orbitals at right angles to each other.

 The s sublevel is lower energy than the p sublevel.

- The orbital in the s sublevel fills first.
- The 3 orbitals in the p sublevel each get one electron before pairing. (Hund's rule)
- This accounts for the appearance of carbon, C.,

... but it does not account for the geometry of carbon compounds.

Hybridization

- When electrons are shared, they are at lowest energy between the nuclei that are sharing them.
- Their most probable locations are no longer in the atomic orbitals where they were, but rather in new, molecular orbitals.
 - A good description of these orbitals comes from hybridization theory.
- Hybridization = mixing of atomic orbitals to form new orbitals

sp³ Hybridization

- sp^3 hybrid orbitals are formed by combining one s orbital with three p orbitals to form four equal energy orbitals.
- Since the four orbitals are equal energy, one electron goes into each before pairing.
- This gives carbon four unpaired electrons.

More on sp³ Hybridization

• The four sp³ hybrid orbitals are at 109°. (Imagine tying four balloons together.)

- When carbon bonds with four hydrogens to form methane, the s orbitals overlap the four sp^3 orbitals to form sigma bonds (σ bonds).
 - sigma bond bond formed by sharing a pair of electrons in an area centered on a line between two atoms.
- Whenever an atom is surrounded by four effective electron pairs, sp³ hybrid orbitals are required.

sp² Hybridization

- Whenever an atom is surrounded by three effective electron pairs to form a trigonal planar molecule, a set of sp² hybrid orbitals is required.
- Combination of one s orbital and two p orbitals to form an sp² hybrid gives the appropriate 120° angle.
 - o In forming the sp^2 orbital, one p orbital is not used, and is oriented perpendicular to the plane of the sp^2 orbitals.
- Example: Ethene (C_2H_4) , has three effective pairs of electrons around each carbon (the double bond acts as one effective pair)

Bonding by sp² Hybridization

Each of the three sp² orbitals forms bonds by sharing a pair of electrons in an area centered on a line between the two atoms.

- The double bond is formed in the space above and below the σ bond by the p orbital perpendicular to the sp² orbitals.
 - \circ This is called a pi (π) bond.

sp Hybridization

- sp hybridization enables two effective pairs of electrons to bond at 180°.
 - One s and one p are hybridized to form two sp hybrid orbitals at a 180° angle.
 - Two p orbitals remain.
- The hybrid orbitals form sigma bonds and the *p* orbitals form pi bonds.
- Examples
 - \circ CO₂
 - $\circ C_2H_2$
 - $\circ N_2$

dsp³ Hybridization

- WRITE
- *dsp*³ hybridization enables a trigonal bipyrimidal arrangement for five pairs of electrons surrounding a central atom.
- Forms from one *d* orbital, one *s* orbital, and three *p* orbitals.
- Examples
 - o PCI₅
 - $\circ I_3$

d²sp³ Hybridization

- d²sp³ hybridization enables an octahedral arrangement for six pairs of electrons surrounding a central atom.
 - Forms from two d orbitals, one s orbital, and three p orbitals.
- Examples
 - $\circ SF_6$
 - XeF₄ (Xe has two lone pairs)

