The Methane Problem The Lewis structure for methane (CH₄) is: H——C——H Based on the VSEPR model, the shape is tetrahedral. - The electron dot diagram for carbon is $\ddot{\mathbf{C}}$. - How do you get four bonds at 109° from two unpaired electrons in p orbitals at 90°? #### The Atomic Orbital Conundrum The valence shell for the main group elements consists of one s orbital and 3 p orbitals at right angles to each other. The s sublevel is lower energy than the p sublevel. - The orbital in the s sublevel fills first. - The 3 orbitals in the p sublevel each get one electron before pairing. (Hund's rule) - This accounts for the appearance of carbon, C., ... but it does not account for the geometry of carbon compounds. #### Hybridization - When electrons are shared, they are at lowest energy between the nuclei that are sharing them. - Their most probable locations are no longer in the atomic orbitals where they were, but rather in new, molecular orbitals. - A good description of these orbitals comes from hybridization theory. - Hybridization = mixing of atomic orbitals to form new orbitals ## sp³ Hybridization - sp^3 hybrid orbitals are formed by combining one s orbital with three p orbitals to form four equal energy orbitals. - Since the four orbitals are equal energy, one electron goes into each before pairing. - This gives carbon four unpaired electrons. ## More on sp³ Hybridization • The four sp³ hybrid orbitals are at 109°. (Imagine tying four balloons together.) - When carbon bonds with four hydrogens to form methane, the s orbitals overlap the four sp^3 orbitals to form sigma bonds (σ bonds). - sigma bond bond formed by sharing a pair of electrons in an area centered on a line between two atoms. - Whenever an atom is surrounded by four effective electron pairs, sp³ hybrid orbitals are required. ## sp² Hybridization - Whenever an atom is surrounded by three effective electron pairs to form a trigonal planar molecule, a set of sp² hybrid orbitals is required. - Combination of one s orbital and two p orbitals to form an sp² hybrid gives the appropriate 120° angle. - o In forming the sp^2 orbital, one p orbital is not used, and is oriented perpendicular to the plane of the sp^2 orbitals. - Example: Ethene (C_2H_4) , has three effective pairs of electrons around each carbon (the double bond acts as one effective pair) ## Bonding by sp² Hybridization Each of the three sp² orbitals forms bonds by sharing a pair of electrons in an area centered on a line between the two atoms. - The double bond is formed in the space above and below the σ bond by the p orbital perpendicular to the sp² orbitals. - \circ This is called a pi (π) bond. ## sp Hybridization - sp hybridization enables two effective pairs of electrons to bond at 180°. - One s and one p are hybridized to form two sp hybrid orbitals at a 180° angle. - Two p orbitals remain. - The hybrid orbitals form sigma bonds and the *p* orbitals form pi bonds. - Examples - \circ CO₂ - $\circ C_2H_2$ - $\circ N_2$ ## dsp³ Hybridization - WRITE - *dsp*³ hybridization enables a trigonal bipyrimidal arrangement for five pairs of electrons surrounding a central atom. - Forms from one *d* orbital, one *s* orbital, and three *p* orbitals. - Examples - o PCI₅ - $\circ I_3$ # d²sp³ Hybridization - d²sp³ hybridization enables an octahedral arrangement for six pairs of electrons surrounding a central atom. - Forms from two d orbitals, one s orbital, and three p orbitals. - Examples - $\circ SF_6$ - XeF₄ (Xe has two lone pairs)