

The Frincipal Quantum Number

- Similar to shells or energy levels of the Bohr model
- Values: Represented by the principal quantum number, n
 - o has integral values, 1 through 7
 - o same as the period number in periodic table
- Significance: Related to the size and energy of the orbital
 - o as *n* increases
 - the orbitals becomes larger and the electrons spend more time further away from the nucleus
 - the electrons are less tightly bound to the nucleus and have higher energy

The Angular Momentum Duantum Oumber

WRITE

- Corresponds to the subshells or sublevels
- Values: Represented by the angular momentum quantum number, ℓ
 - Has integral values from 0 to n-1
 - o Example: What are the values of ℓ when n=3?
 - **e** = { **0**, 1, 2 }
 - As a result, the maximum number of subshells in a principal energy level is n
- Significance: Relates to sublevel energy and the shape of the orbitals

- Sublevels are designated by letters:
 - $\circ \ell = 0$ is called s
 - $\circ \ell = 1$ is called p
 - $0 \ell = 2$ is called d
 - o ℓ =3 is called f
 - o For $\ell > 3$, the sublevels are named alphabetically, (g, h, and i), but there are no atoms with electrons in these locations.
- Sublevel energy
 - The lowest energy sublevel is s
 - o Energy increases from s to p to d to f (and so on)

Orbital Shapes

- Orbital shapes are affected by the number of nodes (or pinched in regions where there is zero probability of finding an electron):
 - o For ℓ =0 there are no nodes, so **s** orbitals are spherical
 - For ℓ =1 there is one node, so p orbitals have two lobes
 - o For $\ell = 2$ there are two nodes, so d orbitals have four lobes
 - o For ℓ =3 there are three nodes, so most f orbitals have eight lobes

- Summary Example
 - For n = 2, $\ell = \{0, 1\}$ so there are two sublevels, s and p
 - o The s orbitals have no nodes, and the p orbitals have one node

The Magnetic Quantum Number

WRITE

- Corresponds to the orientation of the orbital in space relative to the other orbitals of the atom
- Values: Represented by the magnetic quantum number, me
 - o has integral values between ℓ and $-\ell$ including 0
 - o Example: What are the values of me when $\ell = 2$?

$$m_2 = \{-2, -1, 0, 1, 2\}$$

- **Significance:** shows the number of orbitals within a sublevel
 - **Example:** When $\ell = 2$ (sublevel d) there are 5 values of m_{ℓ} , so a d sublevel has 5 d orbitals (in 5 different orientations)

The Electron Spin Quantum Number

- Spectral data indicate that electrons have a magnetic moment with two possible orientations when placed in an external magnetic field
- Values: Represented by the electron spin quantum number, ms
 - Can have only one of two values, $+\frac{1}{2}$, or $-\frac{1}{2}$
- Significance: shows the number of electrons within an orbital
 - Pauli Exclusion Principle Wolfgang Pauli concluded, in a given atom, no two electrons can have the same four quantum numbers
 - Since any electrons in the same orbital will have the same principal quantum number, angular momentum, and magnetic quantum number, they must have opposite spins to occupy the same orbital
 - Since there are only two spins, the maximum number of electrons in an orbital is 2

	Quantum Number	Symbol	Range
	Principle Quantum Number	n	1 to 7
	Angular Momentum	9	0 to n-1
Ŋ	Magnetic Quantum Number	m e	-ℓ to ℓ
	Spin	m _s	+½, or –½

			200	
Sublevel	S	р	d	f
Maximum Number of Orbitals	1	3	5	7
Maximum Number of Electrons	2	6	10	14