SOLUTIONS

Date Period

Quantities in Solutions

Aim

• to calculate the concentration of a solution, including molarity, percent, and ppm Notës

Concentration

* Definition:

 $Concentration = \frac{Mass \, of \, solute(g)}{Volume \, of \, Solvent \, or \, Solution(mL)}$

Molarity 擒

	definition:	$M = \frac{moles(solute)}{moles(solute)}$
		$M = \frac{1}{L(solution)}$

 \Rightarrow related equations

$$\star M = \frac{g}{GFM \times L}$$

$$\star moles = M \times L$$

$$\star L = \frac{moles}{M}$$

$$\star g = M \times GFM \times L$$

$$\therefore$$
 examples

Sample Problem 1 Find the molarity of 100 mL of a solution that contains 0.25 moles of dissolved solute.

Step 1: Convert all volumes to liters					
$100 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 0.1 \text{ L}$					
Step 2: Substitute values into the definitional equation					
	$M = \underline{mole}$	<u>s</u> =	0.25 moles	= 2.5	
М	L		0.1 L		

Sample Problem 2 Find the molarity of 250 mL of a solution that contains 4 g of dissolved sodium hydroxide (NaOH). 1. E. J. d. CEM **a**.

Step 1: Find the GFM							
Na =	= 23 × 1	= 23					
O =	$= 16 \times 1$	= 16					
Н =	$= 1 \times 1$	= 1					
		40					
Step 2: Convert all volumes to liters							
$250 \text{ mL} \times 1 \text{ L} = 0.25 \text{ L}$							
Step 3: Substitute values into the correct equation							
$M = \frac{1}{C}$	$\frac{g}{\text{GFM} \times L} =$	$= \frac{4 \text{ g}}{40 \text{ g/mole} \times 0.25 \text{ L}}$	= 0.4 M				

Sample Problem 3 How many moles of solute are dissolved in 30 mL of a 2 M solution?

Step 1: Convert all volumes to liters $30 \text{ mL} \times 1 \text{ L} = 0.03 \text{ L}$ Step 2: Substitute values into the correct equation moles = $M \times L = (2 \text{ moles/L})(0.03 \text{ L}) = 0.06 \text{ moles}$

<u>Sample Problem 4</u> How many grams of silver nitrate (AgNO ₃) are needed to prepare 200 mL of a 0.1 M solution?							
Step 1: Find the GFM							
Ag	= 108	×	1	= 108			
N	= 14	×	1	= 14			
0	= 16	×	3	= 48			
				170			
Step 2: Convert all volumes to liters							
$200 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 0.2 \text{ L}$							
Step 3 : Substitute values into the correct equation							
$g = M \times GFM \times L =$							
(0.1 mole/L)(170 g/mole)(0.2 L) = 3.4 g							

Percent solution and parts per million (ppm) ★ \Rightarrow Percent by mass:

 $percent \ mass = \frac{mass(solute)}{mass(solution)} \times 100\%$

Sample Problem What is the percent by mass of a solution containing 2.3 g of ethanol (C₂H₅OH) dissolved in 10.0 g of water?

- Step 1: Find the mass of the solution 10.0 g + 2.3 g = 12.3 g
- Divide the mass of the solute by the mass of the solution Step 2: and multiply by 100 %

percent mass =
$$\frac{2.3g}{12.3g} \times 100\% = 19\%$$

SOLUTIONS

Page 2

☆ Percent by volume:

 $percent \ volume = \frac{volume (solute)}{volume (solution)} \times 100\%$

 $\label{eq:sample Problem} \frac{Sample \ Problem}{Sample \ Problem} What is the percent by volume of a solution containing 18.2 mL of glycerine (C_3H_6O_3) dissolved in 85.0 mL of water?$

Step 1: Find the volume of the solution. 18.2 mL + 85.0 mL = 103.2 mL

Step 2: Divide the volume of the solute by the volume of the solution and multiply by 100% $percent \ volume = \frac{18.2mL}{103.2mL} \times 100\% = 17.6\%$ ☆ Parts per million

$$ppm = \frac{mass(solute)}{mass(solution)} \times 1,000,000 \, ppm$$

<u>Sample Problem</u> About 0.0035 g of hydrogen sulfide are dissolved in 10.0 g of water. Express this in parts per million.

Step 1: Find the mass of the solution 10.0 g + 0.0035 g = 10.0035 g

Step 2: Divide the mass of the solute by the mass of the solution and multiply by 1,000,000 ppm. $ppm = \frac{0.0035g}{10.0035g} \times 1,000,000 ppm = 350 ppm$

Answer the questions below by circling the number of the correct response

- 1. How many grams of H₂SO₄ are contained in 1.00 liter of 0.500 M sulfuric acid? (1) 22.4 (2) 98.0 (3) 49.0 (4) 196
- 2. In a 2.0 M solution of KOH, how many moles of KOH are contained in 500 milliliters of the solution? (1) 1 (2) 2 (3) 0.5 (4) 4
- If 0.25 mole of sodium chloride is dissolved in a liter of solution, the molarity of the solution would be (1) 1M (2) 0.50 M (3) 0.25 M (4) 0.125 M
- If 0.5 liter of water is added to 0.5 liter of 2.0 m KBr solution, the molarity of the resulting solution will be (1) 1.0 (2) 2.0 (3) 0.5 (4) 1.5
- 29 grams of NaCl are added to enough water to make 1,000. ml of solution. What is the molarity of the solution? (1) 1.00 M (2) 0.29 M (3) 0.50 M (4) 5.00 M
- What is the molarity of a solution of hydrochloric acid that contains 3.65 grams of HCl dissolved in 1.0 liter of solution? (1) 0.10 M (2) 0.20 M (3) 0.80 M (4) 0.40 M
- A 1 M solution contains 40 grams of a compound in 500 ml of solution. What is the molecular mass of this compound? (1) 20 (2) 40 (3) 60 (4) 80
- A 500 ml solution containing 28 grams of KOH is diluted with water to 1,000. ml. What is the molarity of the resulting solution? (1) 1.0 M (2) 2.0 M (3) 0.25 M (4) 0.50 M
- One liter of a sodium hydroxide solution contains 100 grams of NaOH. The molarity of the solution is (1) 1.0 M (2) 0.25 M (3) 2.5 M (4) 0.50 M

- 10. When 20.0 grams of NaOH is dissolved in 500 mL of solution, the concentration of the solution is (1) 1.0 M (2) 20 M (3) 0.50 M (4) 4.0 M
- If 49 grams of pure H₂SO₄ are added to enough water to make 1,000 ml of solution, what is the molarity of the solution? (1) 1.0 M (2) 0.25 M (3) 0.50 M (4) 0.10 M
- 12. The number of moles of KCl in 1,000 ml of 3 molar solution is (1) 1 (2) 2 (3) 3 (4) 1.5
- 13. How many moles of H₂SO₄ are present in 250 mL of a 2.00 M solution? (1) 0.50 (2) 2.00 (3) 1.25 (4) 8.00
- If 500 mL of 1.0 M H₂SO₄ is diluted with H₂O to a new volume of 1,000 mL, the molarity of the new solution is (1) 1.0 (2) 2.0 (3) 0.25 (4) 0.50
- 15. One liter of a solution of nitric acid contains 126 grams of solution. The molarity of the solution is (1) 1.00 (2) 2.00 (3) 1.26 (4) 0.500
- 16. How much ethanol C₂H₅OH must be added to water to make 1.0 liter of 0.5 molar solution of ethanol? (1) 0.5 gram (2) 46 grams (3) 23 grams (4) 92 grams
- 17. What mass of NaOH (formula mass = 40 g.) is needed to prepare 500 mL of 0.50 M solution? (1) 10. grams (2) 20 grams (3) 25 grams (4) 40 grams
- 18. Two liters of a solution of sulfuric acid contain 98 grams of H₂SO₄. The molarity of this solution is (1) 1.0 (2) 2.0 (2) 0.50 (4) 1.5
- 19. How many moles of AgNO₃ are dissolved in 10 mL of a 1 M AgNO₃? (1) 1 (2) 0.1 (3) 0.01 (4) 0.001