PHASES OF MATTER

Name

Date

Period

Assumptions of the Gas Laws

Aim

to describe ideal gases

Notës

Kinetic theory of gases (under ideal circumstances)

- ★ Gas are composed of particles that are in constant, rapid, random, linear motion.
- ★ Collisions between gas particles are elastic so no energy is lost. As a result, the pressure of a gas at a constant temperature and volume remains constant
- ★ The volume of the particles of a gas is so small compared to the distance between them, it is considered zero. The gas is mostly space.
- * There is no attraction or repulsion between gas molecules
- ★ The average kinetic energy of the molecules of a gas is directly proportional to the Kelvin temperature of the gas

Deviations from ideal gases

- ★ Particles of gas do have volume
- ★ Gas particles do exert forces on each other

Optimum conditions

- ★ High temperature
- ★ Low pressure
- ★ Low molecular mass

Answer the questions below by circling the number of the correct response

1.	Which gas will most closely	resemble an ideal gas at	STP?
	1) SO ₂	3) Cl ₂	
	2) NH ₃	4) H ₂	

- 2. At STP, which gas would most likely behave as an ideal gas? (1) H₂ (3) Cl₂ (2) CO₂ (4) SO₂
- Which gas has properties that are most similar to those of an ideal gas?
 (1) O₂
 (3) NH₃

(1) U_2^2 (2) H_2	(4) H0

- 4. Under which conditions does a real gas behave most like an ideal gas?
 - 1 at high temperatures and low pressures
 - 2 at high temperatures and high pressures
 - 3 at low temperatures and low pressures
 - 4 at low temperatures and high pressures

- 5. Under the same conditions of temperature and pressure, which of the following gases would behave most like an ideal gas?
 (1) He(g)
 (2) NH₃(g)
 (3) Cl₂(g)
 (4) CO₂(g)
- 6. Which gas has properties that are most similar to those of an ideal gas?
 (1) N.
 (3) He

(1) N ₂	(3) пе
(2) O ₂	(4) Xe

- One reason that a real gas deviates from an ideal gas is that the molecules of the real gas have
 a straight-line motion
 - 2 no net loss of energy on collision
 - 3 a negligible volume
 - 4 forces of attraction for each other