Chemistry: Form Ls11.2A

ORGANIC CHEMISTRY

Name	
Date	Period

Structural Formulas and Isomers

Ain

• to interpret organic formulas

Notes

Types of formulas

Type of Compound	Simple formula	Structural formula	Graphic formula
	CH ₄	H—C—H	CH ₄
Alkanes	C_2H_6	H H H H H H H H H H H H H H H H H H H	CH ₃ CH ₃
	C_3H_8	H H H H H H H H H H H H H H H H H H H	CH ₃ CH ₂ CH ₃
	C_2H_4	H C C H	CH ₂ CH ₂
Alkenes	C_3H_6	Н Н Н	CH ₂ CHCH ₃
	C_4H_8	H H H H	CH ₂ CHCH ₂ CH ₃
	C_2H_2	н—с=с—н	СНСН
Alkynes	C_3H_4	H—C≡C — C—H	CHCCH ₃
	C_4H_6	H—C≡C — C — H	CHCCH ₂ CH ₃

• Isomers - compounds with the same simple formula but different structures

- structures must actually be different (looking different on paper is not always enough)
- branches of different isomers are attached on non-equivalent carbons

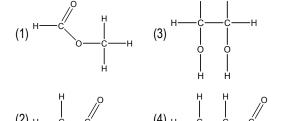
ORGANIC CHEMISTRY Page 2

Answer the questions below by circling the number of the correct response

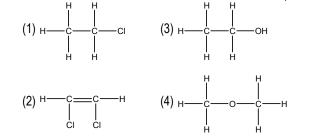
The compounds CH₃CH₂OCH₂CH₃ and CH₃CH₂CH₂CH₂OH are (1) hydrocarbons (2) isomers (3) allotropes (4) carbohydrates

- 2. The compound C₄H₉OH is an isomer of (1) C₃H₇COCH₃ (2) CH₃COOC₂H₅ (3) C₂H₅OC₂H₅ (4) CH₃COOH
- 3. If a compound has a molecular formula of CH₂O₂, then its structural formula must be

(1) H—O—C—O—H (3) H—C—O—H
(2) C. (4)


4. The structural formulas

represent molecules which both are (1) halogen addition products (2) unsaturated hydrocarbons (3) members of alkynes (4) isomers of butane


- Compounds which have the same molecular formula but different molecular structures are called (1) isomers (2) allotropes (3) isotopes (4) homologs
- 6. Which compound is an isomer of CH₃CH₂OH? (1) CH₃CHO (2) CH₃COCH₃ (3) CH₃OCH₃ (4) CH₃CH₂COOH
- Which compound is an isomer of CH₃COOCH₃? (1) CH₃OCH₃
 CH₃COCH₃ (3) CH₃CH₂COOH (4) CH₃CH₂CH₂OH
- Which compound is an isomer of CH₃COOH? (1) HCOOCH₃
 CH₃CH₂COOH (3)CH₃CH₂OH (4) CH₃COOCH₃

9. Which is the correct structural formula of a compound whose molecular formula is CH₄O?

10. Which compound is an isomer of H——c——c

11. Which is the structural formula for an unsaturated compound?

