Name

NUCLEAR CHEMISTRY

name

Date

Period

Half-Life

Aim

• to explain half-life and solve half-life problems

Notës

Half life

- ★ Definition the amount of time it takes for half of a radioactive sample to decay
- ★ Explanation
 - During radioactive decay, high speed particles are emitted that bang into other atoms and cause them to decay
 - \Rightarrow As a sample decays the amount of radioactive material decreases
 - \Rightarrow As the size of the radioactive sample decreases, the number of particles emitted decreases
 - As the number of particles emitted decreases, the number of collisions decreases and radioactive decay slows down
 - A Radioactive decay slows down over time in such a way that the amount of time it takes for half a sample to decay is constant regardless of the size of the sample
- ★ Radioactive dating
 - 🛧 Carbon dating
 - * Carbon-14 is radioactive and has a half life of 5,700 years
 - ★ Carbon dioxide in the air contains carbon-14
 - \star Plants take in carbon dioxide and make carbohydrates as long as they are alive
 - ★ Animals eat plants as long as they are alive
 - ★ As soon as an organism dies, it stops taking in carbon, so its amount of c-14 begins to decrease
 - ☆ Uranium dating
 - * Uranium-238 is radioactive and has a half life of 10^9 years
 - ★ Uranium-238 is found in igneous rock
 - ★ Uranium-238 decays into lead
 - * After the rock cools, the amount of uranium-238 in the rock begins to decrease and the amount of lead begins to increase
 - ★ the fraction of uranium left can be determined by comparing its mass to the mass of the lead
 - \Rightarrow number of half lives and time elapsed
 - $T_e = Time elapsed$
 - $t_{\frac{1}{2}} = \frac{1}{2}$ life
 - n = number of $\frac{1}{2}$ lives
 - f = fraction left

$$f = (\frac{1}{2})^n$$
 $T_e = n(t_{\frac{1}{2}})$

- ★ Half Life Problems
 - ★ Half life problems of all types are best solved by setting up a table that shows the *number of half lives*, the *mass*, the *time elapsed*, and the *fraction left*. (any of these 4 variables can be the unknown)
 - ★ Half lives of many elements are listed in *Table N*

Sample Problem
An ore that once contained 320 g of 60Co now contains only twenty grams of
the radio active material. How long has it been decaying?

Step 1: divide the mass in half repeatedly until it is reduced from 320 g to 20 gStep 2: look up the half life and fill in the rest of the table

number of half lives	mass	time elapsed	fraction left
0	320 g	0	1 (100 %)
1	160 g	5.26 y	1/2
2	80 g	10.52 y	1/4
3	40 g	15.78 y	1/8
4	20 g	21.04 y	1/16

NUCLEAR CHEMISTRY

Answer the questions below by circling the number of the correct response

1. How much of an 8 gram sample of $\frac{^{226}}{^{38}}Ra~$ will remain unchanged at the end of 3 half-life periods?

(1) 1 a	(3) 3 a
(2) 2 g	(4) 4 g

2. What is the total mass of a 10. gram sample of ⁴²K that will remain unchanged after 12.4 hours? ' (3) 7.5 g (1) 2.5 a

1) <u>2.0</u> g	(0) 1.0 g
2) 5. 0 g	(4) 10. g

- 3. As the temperature of a radioactive sample increases, the rate of nuclear decay
 - 1 decreases

2 increases

- 3 remains the same
- 4. A sample contains 100 milligrams of iodine-131. At the end of 32 days, the number of milligrams of iodine-131 that will remain will be (1) 25.00(3) 6.250 (2

) 12.50	(4) 3.125
,	())

- 5. Approximately how many grams of a 40-gram sample of ${}^{131}_{53}$ I will remain unchanged after 24 days? (1) 5 (2) 10 (3) 13 (4) 20
- 6. How much of an 8 gram sample of $\frac{^{226}}{^{38}}$ Ra will remain unchanged at the end of 3 half-life periods? (1) 1 a (3) 3 a

(') '9	(0) 0 9
(2) 2 g	(4) 4 g

7. What is the number of half-life periods required for a sample of a radioactive material to decay to ¹/₁₆ of its original mass? (3) 3 (1) 8

(2) 16	(4) 4

- 8. As a sample of the radioactive isotope ¹³¹I decays, its half-life (1) decreases
 - (2) increases
 - (3) remains the same
- 9. Exactly how much time must elapse before 16 grams of potassium-42 decays, leaving 2 grams of the original isotope?
 - (1) 8 × 12.4 hours (3) 3 × 12.4 hours (2) 2 × 12.4 hours (4) 4 × 12.4 hours