NUCLEAR CHEMISTRY

Name

Date

Period

Natural Roadioactivity

Aim

• to describe the types of naturally occurring radioactive decay

Notës

Natural radioactive decomposition - an unstable nucleus emits particles

- ★ Alpha decay loss of an alpha particle
 - \Rightarrow Alpha particle helium nucleus
 - ★ Structure
 - \bigstar 2 protons
 - \bigstar 2 neutrons
 - \star Symbol ${}^{4}_{2}He$
 - \Rightarrow Nuclear equations for alpha decay
 - ★ General format

$$_{Z}^{A}X \rightarrow _{2}^{4}He + _{Z-2}^{A-4}Y$$

★ Example

$$^{235}_{92}U \rightarrow ^{4}_{2}He + ^{231}_{90}Th$$

- ★ loss of an alpha particle reduces the mass by 4 amu from 235 to 231
- \Rightarrow it also reduces the atomic number by 2 from 92 to 90
- \bigstar the element with an atomic number of 90 is Thorium
- ★ Beta decay loss of a beta particle
 - \Rightarrow Beta particle electron formed from the decay of a neutron into

a proton and an electron $\begin{pmatrix} 1 \\ 0 \end{pmatrix} n \rightarrow \begin{pmatrix} 1 \\ 1 \end{pmatrix} p + \begin{pmatrix} 0 \\ -1 \end{pmatrix} e$

$$\star$$
 Symbol - $^{0}_{1}e$

 \Rightarrow Nuclear equations for beta decay

★ General format

 $\frac{A}{Z}$

$$X \to {}^{A}_{Z+1}Y + {}^{0}_{-1}e$$

★ Example

★

$$^{234}_{90}Th \rightarrow ^{234}_{91}Pa + ^{0}_{-1}e$$

- \Rightarrow loss of a beta particle does not effect the mass
- ★ loss of a beta particle increases the atomic number by 1 from 90 to 91
- \Rightarrow the element with atomic number 91 is protactinium
- Positron emission conversion of a proton to a neutron $\begin{pmatrix} 1 \\ 1 \end{pmatrix} p \rightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix} n + \begin{pmatrix} 0 \\ +1 \end{pmatrix} e$
- \Rightarrow Positron particle similar to an electron in mass and size, but with a positive charge
 - \star Symbol ${}^{0}_{+1}e$
- \Rightarrow Nuclear equations for positron emission
 - ★ General format

$$_{Z}^{A}X \rightarrow _{Z-1}^{A}Y + _{+1}^{0}e$$

★ Example

- $^{37}_{19}K \rightarrow ^{37}_{18}Ar + ^{0}_{+1}e$
- \Rightarrow loss of a positron does not effect the mass
- ★ loss of a positron decreases the atomic number by 1 from 19 to 18
- \bigstar the element with atomic number 18 is argon

Rules for writing nuclear equations

- 1. the masses on each side of the equation must be equal
- 2. the charges on each side of the equation must be equal

 ${}^{A}_{Z}X \rightarrow {}^{a}_{z}x + {}^{A-a}_{Z-z}Y$

General Format

NUCLEAR CHEMISTRY

Answer the questions below by circling the number of the correct response

1.	According to the equation	$X \rightarrow$	$^{208}_{82}Pb +$	${}_2^4He$, the
	nucleus correctly represented by X is			

- (1) ${}^{204}_{80}Hg$ (3) ${}^{204}_{80}Bi$ (2) ${}^{212}_{84}Po$ (4) ${}^{212}_{84}Pb$
- 2. In the reaction ${}^{24}_{11}Na \rightarrow {}^{24}_{12}Mg + X$, the particle represented by tile letter X is 1 a proton 3 an electron 2 a neutron 4 a positron
- When an atom emits a beta particle, the total number of nucleons 1 decreases 2 increases
 - 3 remains the same

- 4. When a beta particle $\begin{pmatrix} 0\\-1 \end{pmatrix} e$ is emitted by the nucleus of an atom the mass number of the atom 1 decreases 2 increases
 - 3 remains the same
- 5. According to Reference Table F, a product of the radioactive decay of $^{226}_{88}Ra$ is

(1)	⁴ ₂ He	(3)	$^{0}_{-1}e$
(2)	$^{226}_{89}$ U	(4)	$^{230}_{90}$ U