NUCLEAR CHEMISTRY

Name

Date

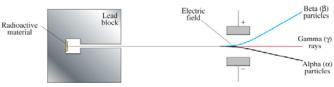
Period

Nuclear Stability

Aim

• to explain why substances are radioactive

Notës

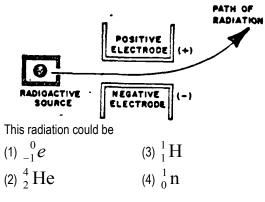

Instability

- \star Protons repel each other
 - ☆ the higher the atomic number is, the greater the repulsion among protons is, making the nucleus unstable
 - * atoms with atomic numbers above 82 have no stable isotopes
 - \Rightarrow neutrons help to stabilize the nucleus
 - \star hydrogen is the only element that does not have neutrons
 - \star as the number of protons increases, the number of neutrons needed to keep the nucleus stable increases
 - ★ the ratio of neutrons to protons in stable nuclei is between 1:1 and 1.5:1, the higher ratio being associated with larger nuclei that have larger repulsive forces
 - ★ stable atoms have a ratio of neutrons to protons that falls in the belt of stability.

Radioactivity

- ★ Unstable nuclei break apart or decay
 - ☆ decaying nuclei release high speed particles and energy called radioactive emissions
 - ☆ radioactive emissions separate in an electric field into three main types
 - ★ alpha particle helium nucleus
 - ★ beta particle electron
 - ★ gamma ray energy
 - \Rightarrow other important emissions positrons

	140-	1.5:1				
number of neutrons	120-					
	100-	n/p ratio too high				
	80-	Belt of Stability				
	60-					
	40-	n/p ratio				
	20-	n/p ratio too low				
	0-0-0	20 40 60 80				
number of protons						



COMMON RADIOACTIVE EMISSIONS						
Particle	Mass	Charge	Symbol	Penetrating Power		
Alpha	4 amu	2+	${}_{2}^{4}He$ or α	low		
Beta	0 amu	1–	$^{0}_{-1}e$ or β^{-}	moderate		
Positron	0 amu	1+	${}^{0}_{+1}e$ or β^+	moderate		
Gamma	0 amu	0	γ	high		

NUCLEAR CHEMISTRY

Answer the questions below by circling the number of the correct response

1. A radioactive source emits radiation which is deflected as shown in the diagram below.

- 2. Which product of nuclear decay has mass but no charge?
 - (1) alpha particles(2) neutrons (3) gamma rays(4) beta positrons