KINETICS AND EQUILIBRIUM

Name

Date

Period

Ēquilibrium

Aim

to describe the behavior of reversible reactions

Notës

Equilibrium - forward and reverse reaction rates are equal in reversible systems

- * Dynamic equilibrium state of balance between two opposing activities
 - The concentration of the reactants and the products remain constant despite the continuation of both the forward and reverse reactions
 - ☆ The concentrations of reactants and products at equilibrium can be quite different
 - \Rightarrow Equilibrium can be attained from either the forward or the reverse reaction
- ★ Types of equilibrium
 - ☆ Phase equilibrium since phase changes are reversible, in closed systems a state of equilibrium between phases can be reached
 - ★ When solids or liquids are confined in a container, equilibrium will be reached when there are enough particles of gas (vapor) to cause the rate of return to the original phase to be equal to the rate of escape
 - ★ This causes the characteristic vapor pressure of a substance at a given temperature
 - \Rightarrow Solution equilibrium
 - ★ Gases in liquids
 - * equilibrium is reached between the gas dissolved in the liquid and the undissolved gas above the liquid
 - ★ equilibrium is affected by temperature and pressure
 - \star low temperature and high pressure favor solution of gases
 - \star carbonated beverages stay carbonated best when tightly closed and chilled
 - \star Solids and liquids
 - ★ solid added to a saturated solution will fall to the bottom instead of dissolving
 - ★ equilibrium is reached between the dissolved solute and the undissolved solute when the rate of dissolving equals the rate of crystallization
 - ☆ Chemical equilibrium
 - ★ Nature of chemical equilibrium
 - ★ equilibrium occurs when forward and reverse reactions occur at equal rates
 - ★ at equilibrium, macroscopic or observable changes no longer occur (color, temperature, pressure, etc.)

Answer the questions below by circling the number of the correct response

- 1. A chemical reaction has reached equilibrium when
 - (1) the reverse reaction begins
 - (2) the forward reaction ceases
 - (3) the concentration of the reactants and products become equal
 - (4) the concentrations of the reactants and products become constant
- 2. When a catalyst is added to a reaction at equilibrium, the rate of the forward reaction
 - (1) decreases and the rate of the reverse reaction decreases
 - (2) decreases and the rate of the reverse reaction increases
 - (3) increases and the rate of the reverse reaction decreases
 - (4) increases and the rate of the reverse reaction increases