Stochionetry

Stoichiometry - calculations based on quantitative relationships in a balanced chemical equation

- * Assumptions of stoichiometry
 - **☆** Reaction has no side reactions
 - ☆ Reaction goes to completion
 - ☆ The reactants are completely consumed

★ Mole problems					
Sample Problem How many moles of oxygen are liberated when 0.4 moles of potassium chlorate decomposes?					
Step 1:	Write a balanced equation and determine the mole ratios from the equation		$2 \text{ KCIO}_3 \rightarrow 2 \text{ KCI} + 3 \text{ O}_2$		
		mole ratio	2	2	3
Step 2:	Identify the known and the unknown	moles	known 0.4		unknown x
Step 3:	Set up a proportion and solve for the unknown		$\bullet \frac{2}{0.4mol}$	$\frac{3}{x} = \frac{3}{x}$	

- Answer the questions below by circling the number of the correct response
- Given the reaction: $N_2 + 3H_2 \rightarrow 2NH_3$, how many moles of nitrogen are needed to produce 8 moles of ammonia?
 - (1) 1(2) 2

- (3) 3
- Given the reaction: $2CO + O_2 \rightarrow 2CO_2$

What is the minimum number of moles of O₂ required to produce one mole of CO₂?

(1) 1.0

(3) 0.25

(2) 2.0

- (4) 0.50
- 3. Given the reaction;

 $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

What is the total number of moles of NaOH needed to react completely with 2 moles of H₂SO₄?

(1) 1

(3) 0.5

(2) 2

(4) 4

- Given the reaction: $2Na + 2H_2O \rightarrow 2NaOH + H_2$ What is the total number of moles of hydrogen produced when 4 moles of sodium react completely?
 - (1) 1(2)2

2x = 1.2mol

x = 0.6mol

- (3) 3(4) 4
- 5. Given the reaction: $N_2(g) + 3H_2(g) \neq 2NH_3(g)$ What is the ratio of moles of H₂(g) consumed to moles of NH₃(g) produced?
 - (1) 1:2(2) 2:3

- (3) 3:2(4) 6:6
- 6. Given the reaction: $(NH_4)_2CO_3 \rightarrow 2NH_3 + CO_2 + H_2O$ What is the minimum amount of ammonium carbonate that reacts to produce 1.0 mole of ammonia?
 - (1) 0.25 mole
- (3) 17 moles
- (2) 0.50 mole
- (4) 34 moles