CHEMICAL REACTIONS

Name

Date

Period

Conservation of Mass

Ain

• describe what happens to the mass during a chemical change

Notës

Matter is neither created nor destroyed

- \star During a chemical reaction the mass does not change
- \star The equation shows conservation of mass

Example

★ $AgNO_3(aq) + NaCl(aq) \rightarrow NaNO_3(aq) + AgCl(s)$

$\frac{SILVER NITRATE}{AgNO_3}$ Ag = 1 × 108 = 108 N = 1 × 14 = 14 O = 3 × 16 = <u>48</u> 170	<u>Sodium Chloride</u> NaCl Na = 1 × 23 = 23 Cl = 1 × 35 = <u>35</u> 58	$\frac{SODIUM NITRATE}{NaNO_3}$ Na = 1 × 23 = 23 N = 1 × 14 = 14 O = 3 × 16 = $\frac{48}{85}$	$\frac{SILVER CHLORIDE}{AgCl} Ag = 1 \times 108 = 108 Cl = 1 \times 35 = \frac{35}{143}$
AgNO ₃ (aq) +	$NaCl(aq) \rightarrow$	NaNO ₃ (aq) +	AgCl(s)
170 +	58 =	85 +	143
	228	= 228	3

Balancing the equation to show conservation of mass

★ Example

 \Rightarrow The following equation does *not* show conservation of mass

$H_2 + O_2$		H_2O
2 + 32	≠	18

★ but starting with two molecules of hydrogen, as shown below by writing a coefficient 2 in front of the hydrogen and forming two molecules of water as shown below by writing a coefficient 2 in front of the water shows conservation

$2H_2 + O_2 \rightarrow 2H_2O$	
2(2) + 32 = 2(18)	
36 = 36	

☆ Coefficients are used to **balance** equations

- \star coefficients make the number of atoms of each type the same on the reactant and product side
- \star coefficients make the mass the same on the reactant and product side of the equation

CHEMICAL FORMULAS AND EQUATIONS

Answer the questions below by circling the number of the correct response

- If 46 g of *X* combines with 16 g of *Y* to form *Z*, how much *Z* is formed? (1) 30 g (2) 2.9 g (3) 724 g (4) 62 g
- The formula mass of sulfuric acid (H₂SO₄) is (1) 194 amu, (2) 98 amu, (3) 50 amu, (4) 192 amu
- Which of the following equations does NOT show conservation of mass? (1) C + O₂ → CO₂ (2) Mg + S → MgS (3) H₂ + S → H₂S (4) H₂ + O₂ → H₂O
- 4. If 6 g of hydrogen burns to produce 54 g of water, how much oxygen was used? (1) 48 g (2) 60 g (3) 9 g (4) 324 g
- 5. During a chemical change, the total mass (1) increases, (2) decreases, (3) remains the same.
- 6. Which of the following is **NOT** a balanced equation? (1) Cu + 2AgNO₃ \rightarrow 2Ag + Cu(NO₃)₂ (2) 3BaCl₂ + Fe₂(SO₄)₃ \rightarrow 2FeCl₃ + 3BaSO₄ (3) 4Na + 2H₂O \rightarrow 4NaOH + H₂ (4) 2KClO₃ \rightarrow 2KCl + 3O₂

Balance each of the equations below and write the *SUM* of the coefficients in the appropriate place on the answer sheet.

- 7. AI + HCI \rightarrow AICI₃ + H₂
- 8. $\text{Li} + \text{H}_2\text{O} \rightarrow \text{LiOH} + \text{H}_2$
- 9. $H_2 + N_2 \rightarrow NH_3$

- 10. In the equation $4AI + 3O_2 \rightarrow 2AI_2O_3$, the number 4 is a (1) subscript, (2) oxidation state, (3) formula mass, (4) coefficient.
- When the equation H2 + N₂ → NH₃ is completely balanced using smallest whole numbers, the sum of all the coefficients will be (1) 6 (2) 7 (3) 3 (4) 12
- 12. When the equation $H_2 + Fe_3O_4 \rightarrow Fe + H_2O$ is completely balanced using *smallest* whole numbers the coefficient of H_2 would be (1) 1 (2) 2 (3) 3 (4) 4
- 13. When the equation $C_2H_4 + O_2 \rightarrow CO_2 + H_2O$ is correctly balanced, using *smallest* whole-numbered coefficients, the sum of all the coefficients is (1) 16 (2) 12 (3) 8 (4) 4
- 14. When the equation $NH_3 + O_2 \rightarrow HNO_3 + H_2O$ is completely balanced using smallest whole numbers, the coefficient of O_2 would be (1) 1 (2) 2 (3) 3 (4) 4
- 15. When the equation $C_2H_4 + O_2 \rightarrow CO_2 + H_2O$ is balanced using smallest whole numbers, what is the coefficient of the O_2 ? (1) 1 (2) 2 (3) 3 (4) 4
- When the equation Na(s) + H₂O(ℓ) → NaOH(aq) + H₂(g) is correctly balanced using smallest whole numbers, the coefficient of the water is (1) 1 (2) 2 (3) 3 (4) 4
- 17. When the equation Al(s) + O₂(g) → Al₂O₃(s) is correctly balanced using the smallest whole numbers, the coefficient of Al(s) is (1) 1 (2) 2 (3) 3 (4) 4