REDOX AND ELECTROCHEMISTRY

Name

Date

Period

Competition for Électrons

Aim

write equations for oxidation and reduction half reactions

Notes

Atoms compete for each other's electrons

- When chemical bonds form, electrons are either lost, gained or shared
- Oxidation-Reduction reactions (Redox ★ reactions) Oxidation ☆ Metals \star lose electrons (OXIDATION)[NOTE: as when metals combine with oxvgen] ☆ are oxidized
 - \star are reducing agents
 - \therefore Nonmetals
 - \star gain electrons reducing their oxidation states (REDUCTION)
 - are reduced ☆
 - * are oxidizing agents Example 1 - $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$

		=======================================			
<u>M</u> g ★ ★	loses electrons gets oxidized to Mg ²⁺	$\frac{O_2}{\bigstar}$	gains electrons gets reduced to O ²⁻		
*	is the reducing agent	*	is the oxidizing agent		
	for O ₂		for Mg		

Half reactions - reaction showing either a gain or loss ☆ of electrons 4e⁻ ☆

$$2Mg^0 \rightarrow 2Mg^{2+} + O_2^0 + 4e^- \rightarrow 2O^{2-}$$

☆ Net equation (REDOX REACTION)— combination of the half reactions such that the number of electrons lost equals the number of electrons gained

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$

Example 2 - More active metals replace less active metals in ★ compounds by transferring electrons to them

Sample Reaction: ☆

☆

☆

$$Zn(s) + Cu(NO_3)_2(aq) \rightarrow Zn(NO_3)_2(aq) + Cu(s)$$

Half reactions — reaction showing either a gain or loss

- of electrons $Zn^0 \rightarrow$ 2e⁻ Zn² ☆ +★ Cu²⁺ + 2e⁻ Cu^0 \rightarrow
- \Rightarrow Net equation combination of the half reactions such that the number of electrons lost equals the number of electrons gained Cu²⁺

+
$$Zn^0 \rightarrow Zn^{2+} + C$$

Spectator ions — ions that are present during a reaction ☆ but do not participate in the reaction: $2NO_3^{-1}$

Oxidation number (Oxidation state) - number assigned to keep track of electrons based on the arbitrary assumption that shared electrons belong to the more electronegative element

- Rules for assigning oxidation numbers
 - Oxidation numbers for atoms that are free elements are always zero
 - The oxidation numbers of ions are the same as the charge on the ion
 - Some elements have only one oxidation state
 - ☆ group 1 metals always form 1+ ions and always have a +1 oxidation state
 - * group 2 metals always form 2+ ions and always have a +2 oxidation state
 - Some elements usually have a particular oxidation state ☆
 - oxygen has a -2 oxidation state except in peroxides ☆ where it is -1 and in compounds with fluorine (OF₂) where it is +2
 - hydrogen has a +1 oxidation state except in hydrides with ☆ group 1 and group 2 metals
 - \Rightarrow the sum of the oxidation numbers
 - ★ in a compound it is always zero
 - ★ in a polyatomic ion it is equal to the charge on the ion
- ★ Finding oxidation numbers

(+2)

- \Rightarrow apply the rules
- ☆ construct a table if necessary

Sample Problem

Find the oxidation state of the elements in K₂Cr₂O₇.

Element	К	Cr	0	Т		
Subscript	2	2	7	T.		
Oxidation state	+1	?	-2	A L		
Sum of oxidation states	+2	??	-14	0		
al potassium is a group one metal its oxidation state is always +1						

- potassium is a group one metal; its oxidation state is always +1
- [b] oxygen usually has an oxidation state of -2
- [c] the sum of oxidation states of each element is the product of the subscript and the oxidation state
- [d] find the -sum of the oxidation states of chromium (??) by setting the sum of all the oxidation states to zero

$$+$$
 ?? + (-14) = 0
?? = +12

find the oxidation state of chromium (?) by dividing the sum [f] (+12) by the subscript (2)

ls Loss Reduction s Gain

REDOX AND ELECTROCHEMISTRY

Answer the questions below by circling the number of the correct response

- 1. In this reaction, the oxidation number (oxidation state) of C changes from: $2CO_2 \rightarrow 2CO + O_2$ (1) 0 to +4 (2) +2 to +4 (3) +3 to 0 (4) +4 to +2
- 2. In the reaction: $2KMnO_4 + 3H_2SO_4 + 5H_2S \rightarrow 5S + 2MnSO_4 + K_2SO_4 + 8H_2O$ the oxidation number of sulfur changes from (1) +5 to -5 (2) -5 to +5 (3) 0 to -2 (4) -2 to 0
- 3. What is the oxidation number of Cr in Na₂CrO₄? (1) +1 (2) +2 (3) +3 (4) +6
- 4. What is the oxidation state of the chromium in K₂Cr₂O₇? (1) +5 (2) +6 (3) +3 (4) +12
- 5. In the reaction Pb + 2Ag⁺ \rightarrow Pb⁺² + 2Ag, the reducing agent is (1) Ag (2) Ag⁺ (3) Pb (4) Pb⁺²
- 6. Which is not an oxidation-reduction reaction?
 - (1) $4Na + O_2 \rightarrow 2Na_2O$
 - (2) Fe + 2HCI \rightarrow FeCI₂ + H₂
 - (3) $CaCl_2(aq) + 2AgNO_3(aq) \rightarrow 2AgCl(s) + Ca(NO_3)_2(aq)$ (4) $2H_2O \rightarrow 2H_2 + O_2$
- 7. Given: $2AI + 3Zn^{+2} \rightarrow 2AI^{+3} + 3Zn$. In this reaction, the oxidizing agent is (1) AI (2) AI^{+3} (3) Zn (4) Zn^{+2}
- 8. Given: $2AI + 3Zn^{+2} \rightarrow 2AI^{+3} + 3Zn$ In this reaction, electrons are transferred from (1) AI to AI+3 (2) Zn+2 to Zn (3) AI to Zn+2 (4) Zn+2 to Al
- 9. What is the oxidation number of nitrogen in N_2O_3 ? (1) +1 (2) +2 (3) +3 (4) +6
- 10. In the reaction $3\dot{C}O + Fe_2O_3 \rightarrow 3CO_2 + 2Fe$, the oxidation number of the iron changes from (1) +2 to 0 (2) +2 to +3 (3) +3 to +2 (4) +3 to 0
- 11. What is the oxidation number of Br in BrO_3^{-2} ? $(1) + 1 \quad (2) + 6 \quad (3) + 5 \quad (4) + 4$
- 12. Which is the reducing agent in the following reaction? $Cl_2(aq) + 2KBr(aq) \rightarrow 2KCl(aq) + Br_2(aq)$ (1) Cl₂ (2) H₂O (3) K⁺ (4) Br
- 13. What is the oxidation number of carbon in $C_2O_4^{-2}$? (1) + 1 (2) + 2 (3) + 3 (4) + 4
- 14. Which is an oxidation-reduction reaction?
 - (1) $CaCO_3 \rightarrow CaO + CO_2$
 - (2) KOH + HBr \rightarrow KBr + \overline{H}_2O
 - (3) AgNO₃ + NaCl → AgCl + NaNO₃
 - (4) $Mg + Cl_2 \rightarrow MgCl_2$

- 15. MnSO₄ is a product in a reaction that contained KMnO₄ as a reactant. The oxidation number of the manganese changed from (1) -2 to +5 (2) +7 to +2 (3) +5 to -2 (4) -7 to +2
- 16. Given the balanced equation: $2HNO_3 + 3H_2S \rightarrow 4H_2O + 2NO + 3S$ Which is reduced? (1) S (2) S-2 (3) N+2 (4) N+5
- 17. During the reaction Ca + H₂ \rightarrow CaH₂, the oxidation number of the hydrogen changes from (1) 0 to +1 (2) +1 to 0 (3) 0 to -1 (4) -1 to 0
- 18. In the reaction $Sn^{+4} + H_2(g) \rightarrow Sn^{+2} + 2H^+$, the reducing agent (1) Sn^{+4} (2) H_2 (3) Sn^{+2} (4) H^+
- 19. Given: $3Ag + 4HNO_3 \rightarrow NO + 3AgNO_3 + 2H_2O$. The reducing agent in this reaction is (1) Ag (2) Ag⁺¹ (3) H⁺¹ (4) N⁺²
- 20. The reaction NaCl(s) \rightarrow Na⁺(aq) + Cl⁻(aq) is an example of (1) an oxidation reaction, only
 - (2) a reduction reaction, only
 - (3) both an oxidation and a reduction reaction
 - (4) neither an oxidation nor a reduction reaction
- 21. The oxidation number of manganese in KMnO₄ is $(1) + 1 \quad (2) + 7 \quad (3) + 3 \quad (4) + 4$
- 22. In the reaction $Sn^{+2} + 2Fe^{+3} \rightarrow Sn^{+4} + 2Fe^{+2}$, the reducing agent is (1) Fe⁺² (2) Fe⁺³ (3) Sn⁺² (4) Sn
- 23. An oxidizing agent will always
 - (1) lose electrons (2) increase in oxidation number
 - (3) be reduced (4) increase in mass