BONDING

Name

Date

Period

Formula Writing

Ain

determine the ratio of elements in a compound from their oxidation states ٠

Notës

Determining formulas for ionic compounds using ★ atomic diagrams

Na +	Cl →	Na ⁺ +	Cl	\rightarrow	NaCl
-1-	-7-		-8-		
-8-	-8-	-8-	-8-		
-2-	-2-	-2-	-2-		
11P	17P	11P	17P		
12N	18N	12N	18N		
Mg + -2-	2F →	Mg^{+2} +	2F-	→	MgF ₂
-8-	-7-	-8-	-8-		
-2-	-2-	-2-	-2-		
12P	9P	12P	9P		
12N	10N	12N	10N		
	-7-		-8-		
	-2-		-2-		
	9P		9P		
	10N		10N		

★ Determining formulas for covalent compounds by pairing up unpaired electrons to complete the outer shell

★ Determining formulas using oxidation states \Rightarrow the sum of the oxidation states is zero

$$\begin{array}{rcl} & \text{Na}^{+1} + \text{Cl}^{-1} \rightarrow \text{NaCl} \\ & +1 + -1 + 0 \\ & \text{Mg}^{+2} + 2\text{F}^{-1} \rightarrow \text{MgF}_2 \\ & +2 + 2(-1) = 0 \\ & \text{Al}^{+3} + 0^{-2} \\ & \text{Al}^{+3} + 0^{-2} \rightarrow \text{Al}_2\text{O}_3 \\ & -\frac{0^{-2}}{+6} + -6 = 0 \end{array}$$

or find lowest common multiple

 \Rightarrow find the lowest common multiple by crossing over

 \bigstar exceptions

- \bigstar equal and opposite add up to zero so the ratio is 1 to 1
 - $\begin{array}{l} \bigstar \quad \mathrm{Mg}^{+2} + \mathrm{O}^{-2} \rightarrow \mathrm{MgO} \\ \end{split} \\ \begin{array}{l} \bigstar \quad \mathrm{Al}^{+3} + \mathrm{P}^{-3} \rightarrow \mathrm{AlP} \end{array}$
- \Rightarrow oxidation states that are multiples of each other must be reduced to lowest terms: $C^{+4} + O^{-2} \rightarrow CO_2 \text{ NOT } C_2O_4$
- ★ polyatomic ions
 - \bigstar see *Table E* for oxidation state
 - * enclose in parentheses if there is more than one

$$NH_4^{+1} + CO_3^{-2} \rightarrow (NH_4)_2CO_3$$

Chemistry: Form Ls4.2A

BONDING

Answer the questions below by circling the number of the correct response

- 1. What is the correct formula for a compound of Li and F? (1) LiF (2) Li_2F (3) LiF_2 (4) Li_2F_3
- What is the correct formula for a compound of Mg and CI? (1) MgCl (2) Mg₂Cl (3) MgCl₂ (4) Mg₂Cl₃
- 3. What is the correct formula for a compound of Al and O? (1) AlO (2) Al_2O (3) Al_3O_2 (4) Al_2O_3 $\,$
- What is the correct formula for a compound of Ca and Br? (1) CaBr (2) Ca₂Br (3) CaBr₂ (4) Ca₂Br₃
- 5. What is the correct formula for a compound of Al and P? (1) AlP (2) Al_2P (3) AlP_2 (4) Al_2P_3