Name

Date

FORMULAS

_____ Period _____

Metric Prefixes

10 ³	10 ²	10 ¹	1	10 ⁻¹	10 ⁻²	10 ⁻³	10-4	10 ⁻⁵	10-6	10 ⁻⁷	10 ⁻⁸	10 ⁻⁹	10 ⁻¹⁰	10 ⁻¹¹	10 ⁻¹²
k	_	I	none	d	с	m			μ		I	n			р

Motior

Speed: speed: $v = \frac{d}{t}$ distance: $d = vt$ time: $t = \frac{d}{v}$	 v = speed d = distance t = time 	d v t
Acceleration: $acceleration: a = \frac{A}{a}$ $time: t = \frac{v_f - v_i}{a}$ $final velocity: v_f =$	$\frac{\Delta v}{t} = \frac{v_f - v_i}{t}$ • $a = acceleration$ • $\Delta v = change in velocity$ • $v_f = final velocity$ • $v_i = initial velocity$	$v_f - v_i$ a t
Free Fall:(objects accelfinal speed: $v_f = gt$ distance: $d = \frac{1}{2}at^2$ $v_{avg} = \frac{v_f + v_i}{2}$ Units:distance: m time: $h =$ mass: $g =$	lerating because of gravity) + v_i • $g = a = 9.8 \ {}^{m}_{s^2} = acceleration of gravity)$ + $v_i t$ • $d = distance$ • $t = time$ • $v_i = initial speed$ • $v_f = final$ • $v_{avg} = average speed$ = meters; $km =$ kilometers; $cm =$ centimeters = hours; $s =$ seconds = grams; $kg =$ kilograms	vity speed

Ēňërgy

Gravitational Energy

- PE = mgh
- The height from which the object falls (h)
- The mass of the object (*m*)
- The acceleration of gravity (g)

 $KE = \frac{1}{2}mv^2$

- The mass of the object (*m*)
- The speed (v)

Forcë

<u>Net Force</u>: • Forces in the same direction $F_{net} = F_1 + F_2 + \ldots + F_n$	• $F_{net} = net force$ • $F_1 + F_2 + \ldots + F_n = add all the forces$
• Forces in opposite directions $F_{net} = F_L - F_S$	• $F_L = larger force$ • $F_S = smaller force$ • $F_L - F_S = subtract the forces$ THE NET FORCE IS IN THE DIRECTION OF THE LARGER FORCE
• Forces at right angles $\frac{Pythagorean \ theorem}{a^2 + b^2 = c^2}$ $c = \sqrt{c^2}$	• $a = one \ of \ the \ forces \ at \ right \ angles$ • $b = one \ of \ the \ forces \ at \ right \ angles$ • $c = the \ net \ force$
• Multiple forces Always add all the forces actin	g in the same direction before subtracting or applying the Pythagorean theorem
$\frac{\text{Coefficient of Friction}}{F_f = F_N \times \mu}$	• $F_f = force \ of \ friction$ • $F_N = normal \ force$ • $\mu = coefficient \ of \ friction$
<u>Newton's Second Law of Moti</u> <i>accleration:</i> $a = \frac{F}{m}$ <i>force:</i> $F = ma$ ($F = m \times a$) <i>mass:</i> $m = \frac{F}{a}$	on:• $a = acceleration$ • $F = force$ • $m = mass$
$\frac{\text{Air Resistance}:}{F_{net} = F_{weight} - F_{air resistance}}$ $F_{weight} = mg$	• $F_{net} = net \ force$ • $m = mass$ • $F_{weight} = weight$ • $F_{air \ resistance} = air \ resistance$ • $g = acceleration \ of \ gravity \ (9.8^m/_{s^2})$
Units:distance: $m =$ meters; $km =$ time: $h =$ hours; $s =$ secmass: $g =$ grams; $kg =$ force: $N =$ newtons;	e kilometers; cm = centimeters conds tilograms $1N = 1 \frac{kg \bullet m}{s^2}$

Page 3

Machines

Work:	
$W = F \times d$ • W = work (J) • F = force (N)	$\left(\begin{array}{c} W \\ F \end{array} \right)$
• $d = \text{distance}(m)$	<u>I</u> a
Power:	
$Power = \frac{Work}{time}$	W
$P = \frac{W}{t}$	$\mathbf{P} \mathbf{t}$
Mechanical Advantage:	
$\begin{array}{l} mechanical \\ advantage \\ \end{array} = \frac{output \ force}{c} \end{array}$	F
<i>uavaniage input force</i>	T out
$MA = \frac{T_{out}}{F_{in}}$	MA F _{in}
Efficiency:	\bigcirc
$efficiency = \frac{work \ output}{work \ input} \times 100\%$	\mathbf{W}
$eff = \frac{W_{out}}{W_{in}} \times 100\%$	Efficiency W _{in}
(<i>NOTE</i> : Express efficiency as a decimal to calculate W _{out} or W _{in} .)	
$\frac{\text{Inclined Plane:}}{W_{out} = F_{out} \times D_{out}}$ $W_{in} = F_{in} \times D_{in}$ $W_{f} = W_{in} - W_{out}$ $AMA = F_{out}/F_{in}$ $IMA = D_{in}/D_{out}$ $Eff = (W_{out}/W_{in}) \times 100$ $Eff = (AMA/IMA) \times 100$	d _{in} MA d _{out}

Machines (Continued)

Levers: $IMA = \frac{A_E}{A_R}$ • $IMA = ideal \ mechanical \ advantage$ $M = F \times A$ • $A_E = effort \ arm$ $M = M_1 + M_2 + \dots$ • $M_E = effort \ moment$ $Balanced \ levers$ • $M_R = resistance \ moment$ $M_E = M_R$ • $M_R = resistance \ moment$	A _E MA A _R
$\frac{\text{Wheel and Axle:}}{IMA} = \frac{input \ radius}{output \ radius}$ $IMA = \frac{R_{in}}{R_{out}}$	R _{in} MAR _{out}
Pulleys: IMA = # of supporting strands IMA (fixed pulley) = 1 IMA (movable pulley) = 2	supporting strands
Units:work: $J = joules$ (also units for energy)power: $W = watts$ $1 W = 1 \frac{J}{s}$ MA:no units	

Monertun

$ \underline{Momentum}: p = mv $ $ p_{TOTAL} = p_1 + p_2 + \dots $	 <i>p</i> = momentum (<i>kg</i>·<i>m</i>/<i>s</i>) <i>m</i> = mass (<i>kg</i>) <i>v</i> = velocity (<i>m</i>/<i>s</i>) + <i>p_n</i> 	 p_{TOTAL} = total momentum p₁, p₂, p_n = momentums of the objects in a system 	p m v
<u>Change of Moment</u> <u>Definitions</u> • $F = ma$ • $a = \frac{\Delta v}{t}$ • $\Delta p = m\Delta v$	um and Force: <u>Substitutions</u> $F = \frac{m\Delta v}{t}$ $F = \frac{\Delta p}{t}$		$ \begin{array}{c} \Delta p \\ F \\ t \end{array} $

Waves

Sourid

 $M = -\frac{v}{v}$

 \mathcal{V}_{sound}

- M = mach number
- v = speed relative to the medium
- v_{sound} = speed of sound in the medium

Speed of Sound Through Different Materials			
Material	Speed (m/s)		
Air	343		
Water	1,483		
Steel	5,940		
Glass	5,640		

Page 7

Light

Formulas

Heat

Temperature:			
K = C + 273	• K = Kelvins		
C = K - 273	• $C = Celsius$ (°C)		
Heat:			
$q = mC\Delta T$	• $q = heat (joules)$	• $T_f = final \ temperature$	(\mathbf{q})
	• $C = specific heat \left(\frac{J}{g^{\circ}C} \text{ or } \frac{J}{gK} \right)$	• T_i = initial temperature	$m \Delta T$
$\Delta T = T_f - T_i$	• $\Delta T = temperature change$		
Specific Heats of Co	ommon Substances:		
		Material	Specific Heat (J/g°C)
		water	4.18
		aluminum	0.897
		copper	0.385
		lead	0.129
		nickel	0.444
		zinc	0.388
<u>Units</u> :			
heat	J = joules		
temperature	$^{\circ}C =$ degrees Celsius; $K =$ Kelvins		
specific heat	$\frac{J}{g^{\circ}C}$ or $\frac{J}{gK}$ = joules per gram degree	e Celsius <i>or</i> joules per gra	n Kelvin

Pressure and Fluids

6

Physical Constants				
Name	Symbol	Value		
Universal gravitational constant	G	$6.67 \times 10^{-11} \mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$		
Acceleration due to gravity	g	9.81 m/s ²		
Speed of light in a vacuum	с	$3.00 \times 10^{8} \text{ m/s}$		
Speed of sound in air at STP		3.31×10^2 m/s		
Mass of Earth		$5.98 imes 10^{24} \text{kg}$		
Mass of the Moon		$7.35 \times 10^{22} \text{kg}$		
Mean radius of Earth		6.37 × 10 ⁶ m		
Mean radius of the Moon		1.74 × 10 ⁶ m		
Mean distance—Earth to the Moon		$3.84 \times 10^{8} \text{ m}$		
Mean distance—Earth to the Sun		$1.50 \times 10^{11} \text{ m}$		
Electrostatic constant	k	$8.99 \times 10^9 \mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$		
1 elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$		
1 coulomb (C)		6.25×10^{18} elementary charges		
1 electronvolt (eV)		$1.60 \times 10^{-19} \text{ J}$		
Planck's constant	h	$6.63 imes 10^{-34}$ J· s		
1 universal mass unit (u)		9.31×10^2 MeV		
Rest mass of the electron	m _e	$9.11 \times 10^{-31} \text{ kg}$		
Rest mass of the proton	m _p	$1.67 \times 10^{-27} \text{ kg}$		
Rest mass of the neutron	m _n	1.67×10^{-27} kg		

Prefix	Symbol	Notation
tera	Т	10 ¹²
giga	G	10 ⁹
mega	М	10 ⁶
kilo	k	10 ³
deci	d	10 ⁻¹
centi	с	10 ⁻²
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹
		10-12

	Kinetic	Static
Rubber on concrete (dry)	0.68	0.90
Rubber on concrete (wet)	0.58	
Rubber on asphalt (dry)	0.67	0.85
Rubber on asphalt (wet)	0.53	
Rubber on ice	0.15	
Waxed ski on snow	0.05	0.14
Wood on wood	0.30	0.42
Steel on steel	0.57	0.74
Copper on steel	0.36	0.53
Teflon on Teflon	0.04	

0

The Electromagnetic Spectrum

Absolute Indices o $\langle f = 5.09 \times 10^{14}$	f Refraction ⁴ Hz)
Air	1.00
Corn oil	1.47
Diamond	2.42
Ethyl alcohol	1.36
Glass, crown	1.52
Glass, flint	1.66
Glycerol	1.47
Lucite	1.50
Quartz, fused	1.46
Sodium chloride	1.54
Water	1.33
Zircon	1.92

Waves

$v = f\lambda$	c = speed of light in a vacuum	
$T = \frac{1}{2}$	f = frequency	
- f	n = absolute index of refraction	
$ \Theta_i = \Theta_r $	T = period	
$n = \frac{c}{c}$	v = velocity or speed	
	λ = wavelength	
$n_1 \sin \theta_1 = n_2 \sin \theta_2$	$\theta = angle$	
$\frac{n_2}{n_1} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$	$ \theta_i = angle of incidence $	
	θ_r = angle of reflection	

Modern Physics

$E_{photon} = hf = \frac{hc}{\lambda}$	c = speed of light in a vacuum
$E_{i,l,i,m} = E_i - E_f$	E = energy
photon i j	f = frequency
$E = mc^2$	h = Planck's constant
	m = mass
	$\lambda = wavelength$

Geometry and Trigonometry

Rectangle	A = area
A = bh	b = base
Triangle $A = \frac{1}{2}bh$	C = circumference
	h = height
	r = radius

Circle

 $A=\pi r^2$ $C = 2\pi r$

Right Triangle

 $c^2 = a^2 + b^2$ $\sin \theta = \frac{a}{c}$ $\cos \theta = \frac{b}{c}$ $\tan \theta = \frac{a}{b}$

Mechanics	
\underline{d}	a = acceleration
$\overline{v} = \overline{t}$	a_c = centripetal acceleration
$a = \Delta v$	A = any vector quantity
$a = \frac{1}{t}$	d = displacement or distance
$v_f = v_i + at$	$E_T = \text{total energy}$
$d = v t + \frac{1}{2} a t^2$	F = force
	F_c = centripetal force
$v_f^2 = v_i^2 + 2ad$	F_f = force of friction
$A_{y} = A \sin \theta$	F_{g} = weight or force due to gravity
$A = A \cos \theta$	F_N = normal force
$F_{x} = F$	F_{net} = net force
$a = \frac{r_{net}}{m}$	$F_s = $ force on a spring
$F_f = \mu F_N$	g = acceleration due to gravity or gravitational field strength
$F = \frac{Gm_1m_2}{2}$	G = universal gravitational constant
$r_g^2 = r^2$	h = height
$a = \frac{F_g}{F_g}$	J = impulse
$g - \frac{1}{m}$	k = spring constant
p = mv	KE = kinetic energy
$p_{hafora} = p_{affar}$	m = mass
	p = momentum
$J = F_{net} t = \Delta p$	P = power
$F_s = kx$	PE = potential energy
$PF - \frac{1}{2}kx^2$	PE_s = potential energy stored in a spring
$L_s = \frac{1}{2}\kappa x$	Q = internal energy
$F_c = ma_c$	r = radius or distance between centers
$a_c = \frac{v^2}{2}$	t = time interval
	v = velocity or speed
$\Delta PE = mg\Delta h$	\overline{v} = average velocity or average speed
$KE = \frac{1}{2}mv^2$	W = work
$W = Fd = \Delta E_T$	x = change in spring length from the equilibrium position
$E_T = PE + KE + O$	$\Delta = \text{change}$
	$\theta = angle$
$P = \frac{W}{t} = \frac{Fd}{t} = F\overline{v}$	μ = coefficient of friction

Standard Temperature and Pressure

Name	Value	Unit
Standard Pressure	101.3 kPa 1 atm	kilopascal atmosphere
Standard Temperature	273 K 0°C	kelvin degree Celsius

Physical Constants for Water

Heat of Fusion	334 J/g
Heat of Vaporization	2260 J/g
Specific Heat Capacity of $\mathrm{H_2O}(\ell)$	4.18 J/g∙K

Symbol	Name	Quantity		
m	meter	length		
g	gram	mass		
Pa	pascal	pressure		
K	kelvin	temperature		
mol	mole	amount of substance		
J	joule	energy, work, quantity of heat		
S	second	time		
min	minute	time		
h	hour	time		
d	day	time		
у	year	time		
L	liter	volume		
ppm	parts per million	concentration		
М	molarity	solution concentration		
u	atomic mass unit	atomic mass		

Selected Units