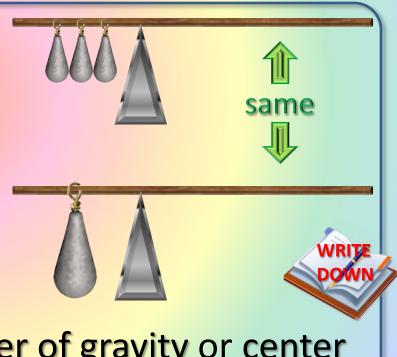


© Evan P. Silberstein, 2008

Balanced, ... but How?

- The photographs to the right show objects that are balanced but look like they should fall over.
- What keeps them from falling over when they look so unstable?



Distribution of Mass

- Objects don't have mass distributed evenly.
- Consider bowling pins:
 - They are fat at the bottom.
 - Most of their mass is down low.
 - This makes them hard to knock over.
- Look at the two pictures of bowling pins:
 The one on the left will fall back into standing position.
 Only the one on the right will fall down.
- This is because of the way the mass is distributed.

History

- The ancient Greek mathematician, physicist, and engineer Archimedes studied the way mass was distributed in objects.
- Archimedes showed that a force exerted on a rigid bar by weights resting at various points along the bar is the same as what it would be if all of the weights were moved to a single point.

 This point is called the center of gravity or center of mass.

An Operational Definition

If you try to balance an object it will only balance over the center of mass.

- The center of mass of a system of particles is a specific point at which, for many purposes, the system's mass behaves as if it were concentrated.
- In the case of a rigid body, the position of its center of mass is fixed in relation to the object (but not necessarily in contact with it).
- The center of mass of a body does not always coincide with its intuitive geometric center.

- Engineers try to design a sport car center of gravity as low as possible to make the car handle better.
- For a plane to be safe to fly, the center of gravity should be about one quarter of the way from the wing leading edge to the wing trailing edge.
- The relationship between force, mass, and acceleration is easiest to interpret when looking at the behavior of the center of mass.
 - The center of mass is a unique point in an object or system that can be used to describe the system's response to external forces.

center of mass

- Consider the bowling pins again:
 - The bowling pin's weight pulls the left pin to a standing position
 - The bowling pin's weight pulls the right pin down.