lsotopes

The Discovery of Neutions

(0)Opl Dalton Goofed

- Dalton's discovery of atoms depended on one major characteristic of atoms . . . mass.
- One of Dalton's postulates says the following about mass:

Atoms of an element are identical. They have the same mass.

- But in 1911 while trying to study the atomic nucleus, J. J. Thomson accidently discovered that neon could have two different atomic masses.
- Atoms of the same element with different atomic masses are called isotopes.
- Atoms of the same element have the same properties.
- But what causes the chemical properties of an atom? The electrons and protons.
- So atoms of different isotopes of an element must have the same number of protons and electrons.
- Whatever causes isotopes to have different masses must be an electrically neutral particle.

The Discovery of Neutrons

- In 1930, scientists showed that bombardment of beryllium with alpha particles produced neutral radiation.
- Measurements by Sir James Chadwick in 1932 proved that this neutral radiation was a particle with a mass similar to a proton.
- The neutral particle in an atom with a mass similar to a proton is called a neutron.

Sunnnairy of Subato nic Particles

- The types of particles found in an atom are:
- Protons;
- Electrons; and
- Neutrons.

Particle	Location	Mass	Relative Mass	Charge
Proton	Nucleus	$1.67 \times 10^{-27} \mathrm{~kg}$	1 amu	+1
Electron	Outside	$9.11 \times 10^{-31} \mathrm{~kg}$	0 amu	-1
Neutron	Nucleus	$1.67 \times 10^{-27} \mathrm{~kg}$	1 amu	0

Sone Definitions

- Atomic number = number of protons (Z)
- Mass number = mass of an isotope (A)
- Isotopic notation = symbol showing the element (X), the atomic number (Z), and the mass number (A)

- Example: ${ }_{11}^{23} \mathrm{Na}$

Number of Newtrons

- The relative mass of electrons is 0 amu , while the relative masses of protons and neutrons are each 1 amu .
- The mass of an atom (A) must be the sum of the atom's atomic number (Z) and the number of neutrons (N).

$$
A=Z+N
$$

- The atomic number and atomic mass are both given on the periodic table. The number neutrons is not.
- The mass listed on the periodic table for each element is the average mass of the isotopes. That is why it is not an integer.
- When this mass is rounded off, it gives the mass number of the most common isotope. But how do you find the number of neutrons?
- The number of neutrons for an element can be found by subtracting the atomic number from the mass number.

$$
N=A-Z
$$

